HomeHome bfol.mm Proof Explorer
Theorem List (p. 2 of 12)
< Previous  Next >

Mirrors  >  Metamath Home Page  >  PE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for bfol.mm Proof Explorer - 101-200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
3.2  Logical Equivalence
 
3.2.1  Motivation Theorems.

If we use 'equiv(𝜑, 𝜓)' as an abbreviation for '¬ ((𝜑𝜓) → ¬ (𝜓𝜑))', then it follows from lemmas mbifwd-P2.1a 101, mbirev-P2.1b 102, and mbicmb-P2.1c 103 that...

equiv(𝜑, 𝜓) (𝜑𝜓) & (𝜓𝜑).

This proves that the formula 'equiv(𝜑, 𝜓) ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))' precisely represents the property of logical equivalence between '𝜑' and '𝜓'. We can use this to our advantage in order to define '(𝜑𝜓)'.

 
Theoremmbifwd-P2.1a 101 Motivation for Definition, Part A.
¬ ((𝜑𝜓) → ¬ (𝜓𝜑))       (𝜑𝜓)
 
Theoremmbirev-P2.1b 102 Motivation for Definition, Part B.
¬ ((𝜑𝜓) → ¬ (𝜓𝜑))       (𝜓𝜑)
 
Theoremmbicmb-P2.1c 103 Motivation for Definition, Part C.
(𝜑𝜓)    &   (𝜓𝜑)        ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))
 
3.2.2  Defining Logical Equivalence.

While it would be tempting to write '((𝜑𝜓) equiv(𝜑, 𝜓))' as the definition of '' , nested occurances of the root symbol being introduced should not appear in a definition. We instead use...

equiv((𝜑𝜓), equiv(𝜑, 𝜓)).

Without the help of the abbreviation, this definitional expression is complex and difficult to read. However, it is simply a nested application of the formula denoted by 'equiv', which we have already shown is synonymous with logical equivalence.

 
3.2.2.1  Syntax Definition.
 
Syntaxwff-bi 104 Extend WFF definition to include the biconditional symbol ''.
wff (𝜑𝜓)
 
3.2.2.2  Justification Theorem.

We will later use the theorem bijust-P2.2 106 as an aid the semantic proof that this definition conservatively extends the system using the original 9 FOL axioms. The theorem is just the definition...

equiv((𝜑𝜓), equiv(𝜑, 𝜓) ),

with 'equiv(𝜑, 𝜓)' substituted for '(𝜑𝜓)'. That is...

equiv( equiv(𝜑, 𝜓), equiv(𝜑, 𝜓) ).

This is just a special case of the statement...

equiv(𝛾, 𝛾),

which is proven as bijust-P2.2-L1 105.

 
Theorembijust-P2.2-L1 105 Lemma for bijust-P2.2 106. [Auxiliary lemma - not displayed.]
 
Theorembijust-P2.2 106 Justification Theorem for df-bi-D2.1 107.
¬ ((¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))
 
3.2.2.3  Formal Definition.
 
Definitiondf-bi-D2.1 107 Definition of Biconditional, ''. Read as "if and only if".
¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))
 
3.2.2.4  Standard Form.

We now derive the "if" (dfbiif-P2.3a 108) and "only if" (dfbionlyif-P2.3b 109) parts of the statement that '(𝜑𝜓)' is equivalent to 'eq(𝜑, 𝜓)'.

Taken together with the various substitution properties of '' which we will prove later, the theorems dfbiif-P2.3a 108, and dfbionlyif-P2.3b 109 can be used to show that the symbol is always eliminable.

Finally, we combine the previous statement into one in the form of dfbialt-P2.4 110. This can be thought of as the standard form of the definition which follows the typical idiom...

definiendum '' definiens.

 
Theoremdfbiif-P2.3a 108 Sufficient Conditon for (i.e. "If" part of) df-bi-D2.1 107.
(¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))
 
Theoremdfbionlyif-P2.3b 109 Necessary Condition for (i.e. "Only If" part of) df-bi-D2.1 107.
((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
 
Theoremdfbialt-P2.4 110 Alternate Form of df-bi-D2.1 107.
((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
 
3.2.3  Fundamental Properties.

Taken together, the properties bifwd-P2.5a 111, birev-P2.5b 115, and bicmb-P2.5c 119 completely define logical equivalence.

 
Theorembifwd-P2.5a 111 '' Forward Implication.
((𝜑𝜓) → (𝜑𝜓))
 
Theorembifwd-P2.5a.SH 112 Inference from bifwd-P2.5a 111.
(𝜑𝜓)       (𝜑𝜓)
 
Theorembifwd-P2.5a.AC.SH 113 Deductive Form of bifwd-P2.5a 111
(𝛾 → (𝜑𝜓))       (𝛾 → (𝜑𝜓))
 
Theorembifwd-P2.5a.2AC.SH 114 Another Deductive form of bifwd-P2.5a 111.
(𝛾₁ → (𝛾₂ → (𝜑𝜓)))       (𝛾₁ → (𝛾₂ → (𝜑𝜓)))
 
Theorembirev-P2.5b 115 '' Reverse Implication.
((𝜑𝜓) → (𝜓𝜑))
 
Theorembirev-P2.5b.SH 116 Inference from birev-P2.5b 115.
(𝜑𝜓)       (𝜓𝜑)
 
Theorembirev-P2.5b.AC.SH 117 Deductive Form of birev-P2.5b 115
(𝛾 → (𝜑𝜓))       (𝛾 → (𝜓𝜑))
 
Theorembirev-P2.5b.2AC.SH 118 Another Deductive Form of birev-P2.5b 115
(𝛾₁ → (𝛾₂ → (𝜑𝜓)))       (𝛾₁ → (𝛾₂ → (𝜓𝜑)))
 
Theorembicmb-P2.5c 119 '' Combine Implications.
((𝜑𝜓) → ((𝜓𝜑) → (𝜑𝜓)))
 
Theorembicmb-P2.5c.2SH 120 Inference from bicmb-P2.5c 119.
(𝜑𝜓)    &   (𝜓𝜑)       (𝜑𝜓)
 
Theorembicmb-P2.5c.AC.2SH 121 Deductive Form of bicmb-P2.5c 119.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜓𝜑))       (𝛾 → (𝜑𝜓))
 
Theorembicmb-P2.5c.2AC.2SH 122 Another Deductive Form of bicmb-P2.5c 119.
(𝛾₁ → (𝛾₂ → (𝜑𝜓)))    &   (𝛾₁ → (𝛾₂ → (𝜓𝜑)))       (𝛾₁ → (𝛾₂ → (𝜑𝜓)))
 
3.2.4  Equivalence Relation Properties.

Show that '' is an equivalence relation.

 
Theorembiref-P2.6a 123 Equivalence Property: '' Reflexivity.
(𝜑𝜑)
 
Theorembisym-P2.6b 124 Equivalence Property: '' Symmetry.
((𝜑𝜓) → (𝜓𝜑))
 
Theorembisym-P2.6b.SH 125 Inference from bisym-P2.6b 124.
(𝜑𝜓)       (𝜓𝜑)
 
Theorembitrns-P2.6c 126 Equivalence Property: '' Transitivity.
((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
 
3.2.5  Substitution Laws.

These laws can be chained together to produce a countably infinite set of rules of the form...

((𝜑𝜓) → (𝜗𝜗(𝜓/𝜑)),

where '𝜗' involves some combination of connectives '¬' and '', and contains the sub-formula '𝜑'. The notation '𝜗(𝜓/𝜑)' indicates the formula '𝜗' with one or more instances of the sub-formula '𝜑' replaced with '𝜓'.

This idea will be expanded to formulas with quantifiers after developing the rules of predicate calculus.

 
Theoremsubneg-P2.7 127 Substitution Law for '¬'.
((𝜑𝜓) → (¬ 𝜑 ↔ ¬ 𝜓))
 
Theoremsubiml-P2.8a 128 Left Substitution Law for ''.
((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
 
Theoremsubiml-P2.8a.SH 129 Inference from subiml-P2.8a 128.
(𝜑𝜓)       ((𝜑𝜒) ↔ (𝜓𝜒))
 
Theoremsubimr-P2.8b 130 Right Substitution Law for ''.
((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
 
Theoremsubimr-P2.8b.SH 131 Inference from subimr-P2.8b 130.
(𝜑𝜓)       ((𝜒𝜑) ↔ (𝜒𝜓))
 
3.3  Logical Conjunction
 
3.3.1  Defining Logical Conjunction.
 
3.3.1.1  Syntax Definition.
 
Syntaxwff-and 132 Extend WFF definition to include the "and" symbol ''.
wff (𝜑𝜓)
 
3.3.1.2  Formal Definition.
 
Definitiondf-and-D2.2 133 Definition of Conjunction, ''. Read as "and".
((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
 
3.3.2  Fundamental Properties.

Taken together, the properties simpl-P2.9a 134, simpr-P2.9b 136, and cmb-P2.9c 138 completely define logical conjunction.

 
Theoremsimpl-P2.9a 134 '' Left Simplification.
((𝜑𝜓) → 𝜑)
 
Theoremsimpl-P2.9a.AC.SH 135 Deductive Form of simpl-P2.9a 134.
(𝛾 → (𝜑𝜓))       (𝛾𝜑)
 
Theoremsimpr-P2.9b 136 '' Right Simplification.
((𝜑𝜓) → 𝜓)
 
Theoremsimpr-P2.9b.AC.SH 137 Deductive Form of simpr-P2.9b 136.
(𝛾 → (𝜑𝜓))       (𝛾𝜓)
 
Theoremcmb-P2.9c 138 '' Introduction by Combination.
(𝜑 → (𝜓 → (𝜑𝜓)))
 
Theoremcmb-P2.9c.AC.2SH 139 Deductive Form of cmb-P2.9c 138.
(𝛾𝜑)    &   (𝛾𝜓)       (𝛾 → (𝜑𝜓))
 
3.3.3  Importation and Exportation Laws.
 
Theoremimport-P2.10a 140 '' Importation Law.
((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → 𝜒))
 
Theoremimport-P2.10a.SH 141 Inference from import-P2.10a 140.
(𝜑 → (𝜓𝜒))       ((𝜑𝜓) → 𝜒)
 
Theoremexport-P2.10b 142 '' Exportation Law.
(((𝜑𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))
 
Theoremexport-P2.10b.SH 143 Inference from export-P2.10b 142.
((𝜑𝜓) → 𝜒)       (𝜑 → (𝜓𝜒))
 
3.4  Logical Disjunction
 
3.4.1  Defining Logical Disjunction.
 
3.4.1.1  Syntax Definition.
 
Syntaxwff-or 144 Extend WFF definition to include the "or" symbol ''.
wff (𝜑𝜓)
 
3.4.1.2  Formal Definition.
 
Definitiondf-or-D2.3 145 Definition of Disjunction, ''. Read as "or".
((𝜑𝜓) ↔ (¬ 𝜑𝜓))
 
3.4.2  Fundamental Properties.

Taken together, the properties orintl-P2.11a 146, orintr-P2.11b 148, and orelim-P2.11c 150 completely define logical disjunction.

 
Theoremorintl-P2.11a 146 Left Introduction Rule for ''.
(𝜑 → (𝜓𝜑))
 
Theoremorintl-P2.11a.AC.SH 147 Deductive Form of orintl-P2.11a 146.
(𝛾𝜑)       (𝛾 → (𝜓𝜑))
 
Theoremorintr-P2.11b 148 Right Introduction Rule for ''.
(𝜑 → (𝜑𝜓))
 
Theoremorintr-P2.11b.AC.SH 149 Deductive Form of orintr-P2.11b 148.
(𝛾𝜑)       (𝛾 → (𝜑𝜓))
 
Theoremorelim-P2.11c 150 '' Elimination Law.

This is also known as the "Proof by Cases" law.

((𝜑𝜒) → ((𝜓𝜒) → ((𝜑𝜓) → 𝜒)))
 
Theoremorelim-P2.11c.AC.3SH 151 Deductive Form of orelim-P2.11c 150.
(𝛾 → (𝜑𝜒))    &   (𝛾 → (𝜓𝜒))    &   (𝛾 → (𝜑𝜓))       (𝛾𝜒)
 
3.4.3  The Law of Excluded Middle.
 
Theoremexclmid-P2.12 152 Law of Excluded Middle.
(𝜑 ∨ ¬ 𝜑)
 
3.5  True and False Constants.
 
3.5.1  Defining True.
 
3.5.1.1  Syntax Definition.
 
Syntaxwff-true 153 Extend WFF definition to include the "true" constant ''.
wff
 
3.5.1.2  Justification Theorem.
 
Theoremtruejust-P2.13 154 Justification Theorem for df-true-D2.4 155.
((∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥) ↔ (∀𝑦 𝑦 = 𝑦 → ∀𝑦 𝑦 = 𝑦))
 
3.5.1.3  Formal Definition.
 
Definitiondf-true-D2.4 155 Definition of True, ''.
(⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
 
3.5.2  Fundamental Property of "True" Constant.
 
Theoremtrue-P2.14 156 '' is a theorem.
 
3.5.3  Defining False.
 
3.5.3.1  Syntax Definition.
 
Syntaxwff-false 157 Extend WFF definition to include the "false" constant ''.
wff
 
3.5.3.2  Formal Definition.
 
Definitiondf-false-D2.5 158 Definition of False, ''.
(⊥ ↔ ¬ ⊤)
 
3.5.4  Fundamental Property of "False" Constant.
 
Theoremfalse-P2.15 159 '' is refutable.
¬ ⊥
 
PART 4  Chapter 3: Propositional Calculus (Natural Deduction)
 
4.1  Define Conjunction Tuples.
 
Syntaxwff-rcp-AND3 160 Extend WFF definition to include '' 3-Tuple.
wff (𝜑₁𝜑₂𝜑₃)
 
Definitiondf-rcp-AND3 161 '' 3-Tuple.
((𝜑₁𝜑₂𝜑₃) ↔ ((𝜑₁𝜑₂) ∧ 𝜑₃))
 
Syntaxwff-rcp-AND4 162 Extend WFF definition to include '' 4-Tuple.
wff (𝜑₁𝜑₂𝜑₃𝜑₄)
 
Definitiondf-rcp-AND4 163 '' 4-Tuple.
((𝜑₁𝜑₂𝜑₃𝜑₄) ↔ ((𝜑₁𝜑₂𝜑₃) ∧ 𝜑₄))
 
Syntaxwff-rcp-AND5 164 Extend WFF definition to include '' 5-Tuple.
wff (𝜑₁𝜑₂𝜑₃𝜑₄𝜑₅)
 
Definitiondf-rcp-AND5 165 '' 5-Tuple.
((𝜑₁𝜑₂𝜑₃𝜑₄𝜑₅) ↔ ((𝜑₁𝜑₂𝜑₃𝜑₄) ∧ 𝜑₅))
 
4.2  Natural Deduction for Propositional Calculus.

These rules introduce a new axiomatic system designed to emulate natural deduction using Gentzen sequent notation. Lines are writen as...

(𝛾𝜑),

to emulate the sequent notation...

𝛾 𝜑.

'𝛾' can be understood as a list of assumptions. Here we write

((𝛾₁𝛾₂... 𝛾n ) → 𝜑),

to emulate...

𝛾₁, 𝛾₂, ... , 𝛾n 𝜑.

Rule 1 is used to emulate the statement (or re-statement) of an assumption (i.e. a formula on the left hand side), and rule 2 is used to import an earlier result into a new context with additional assumptions (i.e. additional formulas on the left hand side). Either of these two rules can be used to emulate the introduction of a new assumptions. Rules 3, 5, and 12 are used emulate the discharging of assumptions.

The one limitation of our notation is the inability to express the case where the left side of the sequent is empty. To facilitate this we must introduce the symbol '' along with two additional rules (17 and 18) for its introduction and elimination. We can then replace '𝛾' with '' and use any of the rules 1 - 15 as normal. Rules 19 and 20 introduce and eliminate the the corresponding '' symbol. This symbol isn't strictly necessary, but serves for more convenient and standard notation when doing natural deduction proofs by contradiction. Rule 3 would usually be used to introduce '', but the redundant rule 19 is included as the corresponding dual form of the '' rule.

In our syntax...

(𝛾₁𝛾₂𝛾₃... 𝛾n )

is shorthand for...

(... ((𝛾₁𝛾₂) ∧ 𝛾₃)... 𝛾n ).

This syntax allows one to write sequents of length longer than three without the need for nested parentheses. The recipes 'rcp-NDSEP' and 'rcp-NDJOIN' facilitate the use of this syntax. Addational versions can be added as needed for longer sequents. These rules merely add more convenient syntax. They do not extend the logic at all.

 
4.2.1  Axiomatic Rules.
 
Theoremndasm-P3.1 166 Natural Deduction: State Assumption.

This rule is simply stating an assumption.

((𝛾𝜑) → 𝜑)
 
Theoremndimp-P3.2 167 Natural Deduction: Import Previous Consequent.

Any previous consequent can be re-stated with an additional assumption added.

(𝛾𝜑)       ((𝛾𝜓) → 𝜑)
 
Theoremndnegi-P3.3 168 Natural Deduction: '¬' Introduction Rule.

If an assumption leads to a contradiction, then we can discharge it and conclude its negation.

((𝛾𝜑) → 𝜓)    &   ((𝛾𝜑) → ¬ 𝜓)       (𝛾 → ¬ 𝜑)
 
Theoremndnege-P3.4 169 Natural Deduction: '¬' Elimination Rule.

If we can deduce a contradiction within some context, then we can deduce any arbitrary WFF from that same context.

(𝛾𝜑)    &   (𝛾 → ¬ 𝜑)       (𝛾𝜓)
 
Theoremndimi-P3.5 170 Natural Deduction: '' Introduction Rule.

If we can deduce '𝜓' after assuming '𝜑', then we can conclude '𝜑𝜓' with '𝜑' discharged.

((𝛾𝜑) → 𝜓)       (𝛾 → (𝜑𝜓))
 
Theoremndime-P3.6 171 Natural Deduction: '' Elimination Rule.

This rule is just Modus Ponens with an added context.

(𝛾𝜑)    &   (𝛾 → (𝜑𝜓))       (𝛾𝜓)
 
Theoremndandi-P3.7 172 Natural Deduction: '' Introduction Rule.

Deduce the conjunction of two previously deduced WFFs.

(𝛾𝜑)    &   (𝛾𝜓)       (𝛾 → (𝜑𝜓))
 
Theoremndandel-P3.8 173 Natural Deduction: Left '' Elimination Rule.

Deduce the right conjunct (i.e. eliminate the left conjunct) of a previously deduced conjunction.

(𝛾 → (𝜑𝜓))       (𝛾𝜓)
 
Theoremndander-P3.9 174 Natural Deduction: Right '' Elimination Rule.

Deduce the left conjunct (i.e. eliminate the right conjunct) of a previously deduced conjunction.

(𝛾 → (𝜑𝜓))       (𝛾𝜑)
 
Theoremndoril-P3.10 175 Natural Deduction: Left '' Introduction Rule.

Deduce a new disjunction containing an arbitrary WFF to the left of a previously deduced WFF.

(𝛾𝜑)       (𝛾 → (𝜓𝜑))
 
Theoremndorir-P3.11 176 Natural Deduction: Right '' Introduction Rule.

Deduce a new disjunction containing an arbitrary WFF to the right of a previously deduced WFF.

(𝛾𝜑)       (𝛾 → (𝜑𝜓))
 
Theoremndore-P3.12 177 Natural Deduction: '' Elimination Rule.

If...

1.) after assuming '𝜑' we deduce '𝜒',

2.) after assuming '𝜓' we also deduce '𝜒', and

3.) we know that either '𝜑' or '𝜓' holds,

then we can deduce '𝜒' with the case assumptions, '𝜑' and '𝜓', discharged.

((𝛾𝜑) → 𝜒)    &   ((𝛾𝜓) → 𝜒)    &   (𝛾 → (𝜑𝜓))       (𝛾𝜒)
 
Theoremndbii-P3.13 178 Natural Deduction: '' Introduction Rule.

If we have previously deduced both directions of a biconditional, then we can deduce the full biconditional.

(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜓𝜑))       (𝛾 → (𝜑𝜓))
 
Theoremndbief-P3.14 179 Natural Deduction: '' Elimination Rule - Forward Implication.

After deducing a biconditional statement, we can deduce the assocated forward implication.

(𝛾 → (𝜑𝜓))       (𝛾 → (𝜑𝜓))
 
Theoremndbier-P3.15 180 Natural Deduction: '' Elimination Rule - Reverse Implication.

After deducing a biconditional statement, we can deduce the associated reverse implication.

(𝛾 → (𝜑𝜓))       (𝛾 → (𝜓𝜑))
 
Theoremndexclmid-P3.16 181 Natural Deduction: Law of Excluded Middle (restated).

Every WFF '𝜑' is either true or false. This law is rejected within intuitionist logic.

(𝜑 ∨ ¬ 𝜑)
 
4.2.1.1  Rules for "True" and "False" Constants.
 
Theoremndtruei-P3.17 182 Natural Deduction: '' Introduction Rule.

This can be used to turn an ordinary theorem into a sequent. In this case '' represents '𝛾' and any of the rules 1 - 15 can be applied.

𝜑       (⊤ → 𝜑)
 
Theoremndtruee-P3.18 183 Natural Deduction: '' Elimination Rule.

Rules 17 and 18 allow us to write '(⊤ → 𝜑)' as a synonym for stating "'𝜑' is true" (or, more precisely, deducable).

(⊤ → 𝜑)       𝜑
 
Theoremndfalsei-P3.19 184 Natural Deduction: '' Introduction Rule.

This statement can be proved from ndasm-P3.1 166, ndimp-P3.2 167, ndimi-P3.5 170, ndnege-P3.4 169, ndtruei-P3.17 182, and ndtruee-P3.18 183. It's included to keep the pattern of having an introduction rule to go along with every elimination rule. ndtruei-P3.17 182 would normally be redundant as well, but it is needed to facilitate the contextless cases not covered by rules 1 - 15.

¬ 𝜑       (𝜑 → ⊥)
 
Theoremndfalsee-P3.20 185 Natural Deduction: '' Elimination Rule.

Rules 19 and 20 allow us to write '(𝜑 → ⊥)' as a synonym for "'𝜑' is false" (or, more precisely, refutable).

(𝜑 → ⊥)        ¬ 𝜑
 
4.2.1.2  Separate Front Supposition (Syntactic Axioms).

This recipe is used in conjunction with ndnegi-P3.3 168, ndimi-P3.5 170, and ndore-P3.12 177.

 
Theoremrcp-NDSEP3 186 ( 1 2 3 ) ( ( 1 2 ) 3 ).
((𝛾₁𝛾₂𝛾₃) → 𝜑)       (((𝛾₁𝛾₂) ∧ 𝛾₃) → 𝜑)
 
Theoremrcp-NDSEP4 187 ( 1 2 3 4 ) ( ( 1 2 3 ) 4 ).
((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)       (((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) → 𝜑)
 
Theoremrcp-NDSEP5 188 ( 1 2 3 4 5 ) ( ( 1 2 3 4 ) 5 ).
((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝜑)       (((𝛾₁𝛾₂𝛾₃𝛾₄) ∧ 𝛾₅) → 𝜑)
 
4.2.1.3  Join Front Supposition (Syntactic Axioms).

This recipe is used in conjunction with ndasm-P3.1 166 and ndimp-P3.2 167.

 
Theoremrcp-NDJOIN3 189 ( ( 1 2 ) 3 ) ( 1 2 3 ).
(((𝛾₁𝛾₂) ∧ 𝛾₃) → 𝜑)       ((𝛾₁𝛾₂𝛾₃) → 𝜑)
 
Theoremrcp-NDJOIN4 190 ( ( 1 2 3 ) 4 ) ( 1 2 3 4 ).
(((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) → 𝜑)       ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)
 
Theoremrcp-NDJOIN5 191 ( ( 1 2 3 4 ) 5 ) ( 1 2 3 4 5 ).
(((𝛾₁𝛾₂𝛾₃𝛾₄) ∧ 𝛾₅) → 𝜑)       ((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → 𝜑)
 
4.2.2  Utility Recipes.

For the rest of the chapter we will treat P3.1 - P3.20 as a new set of axioms. From here on out, we will not rely on any results from chapters 1 or 2 (except indirectly through the new set of axioms).

This will allow us to track the use of ndexclmid-P3.16 181. By avoiding the Law of Excluded Middle, it is possible to develop an intuitionist logical framework alongside the standard classical case.

From here on, all theorems derived without reference to the Law of Excluded Middle (ndexclmid-P3.16 181) will have a in the comment.

 
4.2.2.1  Derived Rules for Stating / Re-Stating Assumptions.

These derived rules may be used in place of ndasm-P3.1 166.

 
Theoremrcp-NDASM1of1 192 ( 1 ) 1.
(𝛾₁𝛾₁)
 
Theoremrcp-NDASM1of2 193 ( 1 2 ) 1.
((𝛾₁𝛾₂) → 𝛾₁)
 
Theoremrcp-NDASM2of2 194 ( 1 2 ) 2.
((𝛾₁𝛾₂) → 𝛾₂)
 
Theoremrcp-NDASM1of3 195 ( 1 2 3 ) 1.
((𝛾₁𝛾₂𝛾₃) → 𝛾₁)
 
Theoremrcp-NDASM2of3 196 ( 1 2 3 ) 2.
((𝛾₁𝛾₂𝛾₃) → 𝛾₂)
 
Theoremrcp-NDASM3of3 197 ( 1 2 3 ) 3.
((𝛾₁𝛾₂𝛾₃) → 𝛾₃)
 
Theoremrcp-NDASM1of4 198 ( 1 2 3 4 ) 1.
((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝛾₁)
 
Theoremrcp-NDASM2of4 199 ( 1 2 3 4 ) 2.
((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝛾₂)
 
Theoremrcp-NDASM3of4 200 ( 1 2 3 4 ) 3.
((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝛾₃)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1125
  Copyright terms: Public domain < Previous  Next >