PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL3.SH

Theorem axL3.SH 32
Description: Inference from ax-L3 13.
Hypothesis
Ref Expression
axL3.SH.1 𝜑 → ¬ 𝜓)
Assertion
Ref Expression
axL3.SH (𝜓𝜑)

Proof of Theorem axL3.SH
StepHypRef Expression
1 axL3.SH.1 . 2 𝜑 → ¬ 𝜓)
2 ax-L3 13 . 2 ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
31, 2ax-MP 14 1 (𝜓𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L3 13  ax-MP 14
This theorem is referenced by:  dneg-P1.13b  72
  Copyright terms: Public domain W3C validator