PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL2.SH

Theorem axL2.SH 31
Description: Inference from ax-L2 12.
Hypothesis
Ref Expression
axL2.SH.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
axL2.SH ((𝜑𝜓) → (𝜑𝜒))

Proof of Theorem axL2.SH
StepHypRef Expression
1 axL2.SH.1 . 2 (𝜑 → (𝜓𝜒))
2 ax-L2 12 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
31, 2ax-MP 14 1 ((𝜑𝜓) → (𝜑𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L2 12  ax-MP 14
This theorem is referenced by:  mae-P1.1  33  syl-P1.2  34  id-P1.4  36  rcp-FR2  41  rcp-FR3  43  clav-P1.12  68  import-L2.1a  91  orelim-P2.11c.AC.3SH  151
  Copyright terms: Public domain W3C validator