HomeHome bfol.mm Proof Explorer
Theorem List (p. 1 of 12)
< Previous  Next >

Mirrors  >  Metamath Home Page  >  PE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for bfol.mm Proof Explorer - 1-100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
PART 1  Chapter 0: Primitives
 
1.1  Definition of Term
 
Syntaxterm-obj 1 If '𝑥' is an object variable, then '𝑥' is a term.
term 𝑥
 
Syntaxterm_zero 2 The constant '0' is a term.
term 0
 
Syntaxterm_succ 3 If '𝑡' is a term, then 's‘𝑡' is a term.
term s‘𝑡
 
Syntaxterm-add 4 If '𝑡' and '𝑢' are terms, then '𝑡 + 𝑢' is a term.
term (𝑡 + 𝑢)
 
Syntaxterm-mult 5 If '𝑡' and '𝑢' are terms, then '𝑡𝑢' is a term.
term (𝑡𝑢)
 
1.2  Definition of WFF
 
Syntaxwff-equals 6 If '𝑡' and '𝑢' are terms, then '𝑡 = 𝑢' is a well formed formula.
wff 𝑡 = 𝑢
 
Syntaxwff-elemof 7 If '𝑡' and '𝑢' are terms, then '𝑡𝑢' is a well formed formula.
wff 𝑡𝑢
 
Syntaxwff-forall 8 If '𝑥' is a object variable and '𝜑' is a well formed formula, then '𝑥𝜑' is a well formed formula.
wff 𝑥𝜑
 
Syntaxwff-neg 9 If '𝜑' is well formed formula, then '¬ 𝜑' is a well formed formula.
wff ¬ 𝜑
 
Syntaxwff-imp 10 If '𝜑' and '𝜓' are well formed formulas, then '(𝜑𝜓)' is a well formed formula.
wff (𝜑𝜓)
 
1.3  First Order Logic Axioms
 
1.3.1  Axioms of Propositional Calculus
 
Axiomax-L1 11 Axiom of Simplification.
(𝜑 → (𝜓𝜑))
 
Axiomax-L2 12 Axiom of Frege.
((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
 
Axiomax-L3 13 Axiom of Transposition.
((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
 
Axiomax-MP 14 Rule of Modus Ponens.
𝜑    &   (𝜑𝜓)       𝜓
 
1.3.2  Axioms of Predicate Calculus
 
Axiomax-GEN 15 Rule of Generalization.
𝜑       𝑥𝜑
 
Axiomax-L4 16 Axiom of Quantified Implication.
(∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
 
Axiomax-L5 17* Axiom of Distinctness.

Note: '𝑥' cannot occur in '𝜑'.

(𝜑 → ∀𝑥𝜑)
 
1.3.2.1  Equality Axioms
 
Axiomax-L6 18* Axiom of Existence.

Note: '𝑥' cannot occur in '𝑡'

¬ ∀𝑥 ¬ 𝑥 = 𝑡
 
Axiomax-L7 19 Axiom of Equality.
(𝑡 = 𝑢 → (𝑡 = 𝑤𝑢 = 𝑤))
 
1.3.3  Substitution Axioms.
 
1.3.3.1  Primitive Predicate Substitution Axioms.
 
Axiomax-L8-inl 20 Left '' substitution.
(𝑡 = 𝑢 → (𝑡𝑤𝑢𝑤))
 
Axiomax-L8-inr 21 Right '' substitution.
(𝑡 = 𝑢 → (𝑤𝑡𝑤𝑢))
 
1.3.3.2  Primitive Function Substitution Axioms.
 
Axiomax-L9-succ 22 Successor substitution.
(𝑡 = 𝑢 → s‘𝑡 = s‘𝑢)
 
Axiomax-L9-addl 23 Left '+' substitution.
(𝑡 = 𝑢 → (𝑡 + 𝑤) = (𝑢 + 𝑤))
 
Axiomax-L9-addr 24 Right '+' substitution.
(𝑡 = 𝑢 → (𝑤 + 𝑡) = (𝑤 + 𝑢))
 
Axiomax-L9-multl 25 Left '' substitution.
(𝑡 = 𝑢 → (𝑡𝑤) = (𝑢𝑤))
 
Axiomax-L9-multr 26 Right '' substitution.
(𝑡 = 𝑢 → (𝑤𝑡) = (𝑤𝑢))
 
1.3.4  Scheme Completion Axioms.
 
Axiomax-L10 27 Non-freeness of Negated Bound Variable.
(¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
 
Axiomax-L11 28* Quantifier Commutation.
(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
Axiomax-L12 29* Variable Substitution.

Note: '𝑥' cannot occur in '𝑡'.

(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
 
PART 2  Chapter 1: Propositional Calculus (Primitive Connectives)
 
2.1  Logical Implication
 
2.1.1  Some Simple Proofs.

SH = Separate Hypothesis.

 
TheoremaxL1.SH 30 Inference from ax-L1 11.
𝜑       (𝜓𝜑)
 
TheoremaxL2.SH 31 Inference from ax-L2 12.
(𝜑 → (𝜓𝜒))       ((𝜑𝜓) → (𝜑𝜒))
 
TheoremaxL3.SH 32 Inference from ax-L3 13.
𝜑 → ¬ 𝜓)       (𝜓𝜑)
 
2.1.2  Some Derived Inferences.
 
Theoremmae-P1.1 33 Middle Antecedent Elimination Inference.
(𝜑 → (𝜓𝜒))    &   𝜓       (𝜑𝜒)
 
Theoremsyl-P1.2 34 Syllogism Inference.
(𝜑𝜓)    &   (𝜓𝜒)       (𝜑𝜒)
 
Theoremdsyl-P1.3 35 Double Syllogism Inference.
(𝜑𝜓)    &   (𝜓𝜒)    &   (𝜒𝜗)       (𝜑𝜗)
 
2.1.3  First Closed Form Theorems.
 
Theoremid-P1.4 36 Implication Identity.
(𝜑𝜑)
 
Theoremrae-P1.5 37 Redundant Antecedent Elimination.
((𝜑 → (𝜑𝜓)) → (𝜑𝜓))
 
Theoremrae-P1.5.SH 38 Inference from rae-P1.5 37.
(𝜑 → (𝜑𝜓))       (𝜑𝜓)
 
2.1.4  Proof Recipes.
 
Theoremrcp-FR1 39 Frege Axiom with One Antecedent.
((𝛾₁ → (𝜑𝜓)) → ((𝛾₁𝜑) → (𝛾₁𝜓)))
 
Theoremrcp-FR1.SH 40 Inference from rcp-FR1 39.
(𝛾₁ → (𝜑𝜓))       ((𝛾₁𝜑) → (𝛾₁𝜓))
 
Theoremrcp-FR2 41 Frege Axiom with Two Antecedents.
((𝛾₂ → (𝛾₁ → (𝜑𝜓))) → ((𝛾₂ → (𝛾₁𝜑)) → (𝛾₂ → (𝛾₁𝜓))))
 
Theoremrcp-FR2.SH 42 Inference from rcp-FR2 41.
(𝛾₂ → (𝛾₁ → (𝜑𝜓)))       ((𝛾₂ → (𝛾₁𝜑)) → (𝛾₂ → (𝛾₁𝜓)))
 
Theoremrcp-FR3 43 Frege Axiom with 3 Antecedents.
((𝛾₃ → (𝛾₂ → (𝛾₁ → (𝜑𝜓)))) → ((𝛾₃ → (𝛾₂ → (𝛾₁𝜑))) → (𝛾₃ → (𝛾₂ → (𝛾₁𝜓)))))
 
Theoremrcp-FR3.SH 44 Inference from rcp-FR3 43.
(𝛾₃ → (𝛾₂ → (𝛾₁ → (𝜑𝜓))))       ((𝛾₃ → (𝛾₂ → (𝛾₁𝜑))) → (𝛾₃ → (𝛾₂ → (𝛾₁𝜓))))
 
2.1.4.1  Application of Proof Recipes.

AC = Add Context.

 
TheoremaxL1.AC.SH 45 Deductive Form of ax-L1 11.
(𝛾𝜑)       (𝛾 → (𝜓𝜑))
 
TheoremaxL2.AC.SH 46 Deductive Form of ax-L2 12.
(𝛾 → (𝜑 → (𝜓𝜒)))       (𝛾 → ((𝜑𝜓) → (𝜑𝜒)))
 
TheoremaxL3.AC.SH 47 Deductive Form of ax-L3 13.
(𝛾 → (¬ 𝜑 → ¬ 𝜓))       (𝛾 → (𝜓𝜑))
 
2.1.5  More Implication Theorems.
 
Theoremimcomm-P1.6 48 Commutation of Antecedents.
((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
 
Theoremimcomm-P1.6.SH 49 Inference from imcomm-P1.6 48.
(𝜑 → (𝜓𝜒))       (𝜓 → (𝜑𝜒))
 
Theoremimcomm-P1.6.AC.SH 50 Deductive Form of imcomm-P1.6 48
(𝛾 → (𝜑 → (𝜓𝜒)))       (𝛾 → (𝜓 → (𝜑𝜒)))
 
Theoremimsubr-P1.7a 51 Implication Substitution (right).

The other related rule is imsubl-P1.7b 54.

((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))
 
Theoremimsubr-P1.7a.SH 52 Inference from imsubr-P1.7a 51.
(𝜑𝜓)       ((𝜒𝜑) → (𝜒𝜓))
 
Theoremimsubr-P1.7a.AC.SH 53 Deductive Form of imsubr-P1.7a 51.
(𝛾 → (𝜑𝜓))       (𝛾 → ((𝜒𝜑) → (𝜒𝜓)))
 
Theoremimsubl-P1.7b 54 Implication Substitution (left).

The other related rule is imsubr-P1.7a 51.

((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
 
Theoremimsubl-P1.7b.SH 55 Inference from imsubl-P1.7b 54.
(𝜑𝜓)       ((𝜓𝜒) → (𝜑𝜒))
 
Theoremimsubl-P1.7b.AC.SH 56 Deductive Form of imsubl-P1.7b 54.
(𝛾 → (𝜑𝜓))       (𝛾 → ((𝜓𝜒) → (𝜑𝜒)))
 
Theoremmpt-P1.8 57 Closed Form of Modus Ponens.
(𝜑 → ((𝜑𝜓) → 𝜓))
 
Theoremmpt-P1.8.AC.2SH 58 Deductive Form of mpt-P1.8 57.
(𝛾𝜑)    &   (𝛾 → (𝜑𝜓))       (𝛾𝜓)
 
Theoremmpt-P1.8.2AC.2SH 59 Another Deductive Form of mpt-P1.8 57.
(𝛾₁ → (𝛾₂𝜑))    &   (𝛾₁ → (𝛾₂ → (𝜑𝜓)))       (𝛾₁ → (𝛾₂𝜓))
 
Theoremmpt-P1.8.3AC.2SH 60 Another Deductive Form of mpt-P1.8 57.
(𝛾₁ → (𝛾₂ → (𝛾₃𝜑)))    &   (𝛾₁ → (𝛾₂ → (𝛾₃ → (𝜑𝜓))))       (𝛾₁ → (𝛾₂ → (𝛾₃𝜓)))
 
Theoremsylt-P1.9 61 Closed Form of Syllogism.
((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
 
Theoremsylt-P1.9.AC.2SH 62 Deductive Form of sylt-P1.9 61.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜓𝜒))       (𝛾 → (𝜑𝜒))
 
Theoremsylt-P1.9.2AC.2SH 63 Another Deductive Form of sylt-P1.9 61.
(𝛾₁ → (𝛾₂ → (𝜑𝜓)))    &   (𝛾₁ → (𝛾₂ → (𝜓𝜒)))       (𝛾₁ → (𝛾₂ → (𝜑𝜒)))
 
Theoremmaet-P1.10 64 Closed Form of Middle Antecedent Elimination.
((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
 
2.2  Logical Negation
 
2.2.1  Basic Negation Laws.
 
Theorempoe-P1.11a 65 Principle of Explosion A.

A contradiction implies anything. The other form is poe-P1.11b 66.

𝜑 → (𝜑𝜓))
 
Theorempoe-P1.11b 66 Principle of Explosion B.

A contradiction implies anything. The other form is poe-P1.11a 65.

(𝜑 → (¬ 𝜑𝜓))
 
Theorempoe-P1.11b.AC.2SH 67 Deductive Form of poe-P1.11b 66.
(𝛾𝜑)    &   (𝛾 → ¬ 𝜑)       (𝛾𝜓)
 
Theoremclav-P1.12 68 Clavious's Law.

The other form is nclav-P1.14 73.

((¬ 𝜑𝜑) → 𝜑)
 
Theoremclav-P1.12.AC.SH 69 Deductive Form of clav-P1.12 68.
(𝛾 → (¬ 𝜑𝜑))       (𝛾𝜑)
 
Theoremclav-P1.12.2AC.SH 70 Another Deductive Form of clav-P1.12 68.
(𝛾₁ → (𝛾₂ → (¬ 𝜑𝜑)))       (𝛾₁ → (𝛾₂𝜑))
 
Theoremdneg-P1.13a 71 Double Negation Law A.

The other related law is dneg-P1.13b 72.

(¬ ¬ 𝜑𝜑)
 
Theoremdneg-P1.13b 72 Double Negation Law B.

The other related law is dneg-P1.13a 71.

(𝜑 → ¬ ¬ 𝜑)
 
Theoremnclav-P1.14 73 Negated Clavius's Law.

This is the negated form of clav-P1.12 68.

((𝜑 → ¬ 𝜑) → ¬ 𝜑)
 
Theoremclav-P1.14.AC.SH 74 Deductive Form of nclav-P1.14 73.
(𝛾 → (𝜑 → ¬ 𝜑))       (𝛾 → ¬ 𝜑)
 
Theoremnclav-P1.14.2AC.SH 75 Another Deductive Form of nclav-P1.14 73.
(𝛾₁ → (𝛾₂ → (𝜑 → ¬ 𝜑)))       (𝛾₁ → (𝛾₂ → ¬ 𝜑))
 
2.2.2  Transposition Laws.
 
Theoremtrnsp-P1.15a 76 Transposition Variant A.
((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
 
Theoremtrnsp-P1.15a.SH 77 Inference from trnsp-P1.15a 76.
(𝜑 → ¬ 𝜓)       (𝜓 → ¬ 𝜑)
 
Theoremtrnsp-P1.15b 78 Transposition Variant B.
((¬ 𝜑𝜓) → (¬ 𝜓𝜑))
 
Theoremtrnsp-P1.15b.AC.SH 79 Deductive Form of trnsp-P1.15b 78.
(𝛾 → (¬ 𝜑𝜓))       (𝛾 → (¬ 𝜓𝜑))
 
Theoremtrnsp-P1.15c 80 Transposition Variant C.
((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
 
Theoremtrnsp-P1.15c.SH 81 Inference from trnsp-P1.15c 80.
(𝜑𝜓)       𝜓 → ¬ 𝜑)
 
Theoremtrnsp-P1.15c.AC.SH 82 Deductive Form of trnsp-P1.15c 80
(𝛾 → (𝜑𝜓))       (𝛾 → (¬ 𝜓 → ¬ 𝜑))
 
Theoremtrnsp-P1.15d 83 Transposition Variant D.
((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
 
Theoremtrnsp-P1.15d.AC.SH 84 Deductive Form of trnsp-P1.15d 83.
(𝛾 → (¬ 𝜑 → ¬ 𝜓))       (𝛾 → (𝜓𝜑))
 
Theoremtrnsp-P1.15d.2AC.SH 85 Another Deductive Form of trnsp-P1.15d 83.
(𝛾₁ → (𝛾₂ → (¬ 𝜑 → ¬ 𝜓)))       (𝛾₁ → (𝛾₂ → (𝜓𝜑)))
 
2.2.3  Classical Arguments.
 
Theorempfbycont-P1.16 86 Proof by Contradiction.
((𝜑𝜓) → ((𝜑 → ¬ 𝜓) → ¬ 𝜑))
 
Theorempfbycont-P1.16.AC.2SH 87 Deductive Form of pfbycont-P1.16 86.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜑 → ¬ 𝜓))       (𝛾 → ¬ 𝜑)
 
Theorempfbycase-P1.17 88 Proof by Cases.
((𝜑𝜓) → ((¬ 𝜑𝜓) → 𝜓))
 
Theorempfbycase-P1.17.2SH 89 Inference from pfbycase-P1.17 88
(𝜑𝜓)    &   𝜑𝜓)       𝜓
 
Theorempfbycase-P1.17.AC.2SH 90 Deductive Form of pfbycase-P1.17 88.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (¬ 𝜑𝜓))       (𝛾𝜓)
 
PART 3  Chapter 2: Propositional Calculus (Defined Connectives)
 
3.1  Development.

To more easily understand the theorems below, let 'conj(𝜑, 𝜓)' be an abbreviation for '¬ (𝜑 → ¬ 𝜓)'. This is the conjunction of the WFFs '𝜑' and '𝜓'. This will later be defined using the '' (and) symbol.

 
Theoremimport-L2.1a 91 Importation Lemma.
((𝜑 → (𝜓𝜒)) → (¬ (𝜑 → ¬ 𝜓) → 𝜒))
 
Theoremimport-L2.1a.SH 92 Inference from import-L2.1a 91.
(𝜑 → (𝜓𝜒))       (¬ (𝜑 → ¬ 𝜓) → 𝜒)
 
Theoremexport-L2.1b 93 Exportation Lemma.
((¬ (𝜑 → ¬ 𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))
 
Theoremexport-L2.1b.SH 94 Inference from export-L2.1b 93.
(¬ (𝜑 → ¬ 𝜓) → 𝜒)       (𝜑 → (𝜓𝜒))
 
Theoremsimpl-L2.2a 95 Left Simplification Lemma.
(¬ (𝜑 → ¬ 𝜓) → 𝜑)
 
Theoremsimpl-L2.2a.SH 96 Inference from simpl-L2.2a 95.
¬ (𝜑 → ¬ 𝜓)       𝜑
 
Theoremsimpr-L2.2b 97 Right Simplification Lemma.
(¬ (𝜑 → ¬ 𝜓) → 𝜓)
 
Theoremsimpr-L2.2b.SH 98 Inference from simpr-L2.2b 97.
¬ (𝜑 → ¬ 𝜓)       𝜓
 
Theoremcmb-L2.3 99 Combining Lemma.
(𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓)))
 
Theoremcmb-L2.3.2SH 100 Inference from cmb-L2.3 99.
𝜑    &   𝜓        ¬ (𝜑 → ¬ 𝜓)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1125
  Copyright terms: Public domain < Previous  Next >