HomeHome bfol.mm Proof Explorer
Theorem List (p. 11 of 12)
< Previous  Next >

Mirrors  >  Metamath Home Page  >  PE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for bfol.mm Proof Explorer - 1001-1100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremexe-P7r.VR12of2 1001* exe-P7r 998 with two variable restrictions.

'𝑥' cannot occur in either '𝛾' or '𝜓'.

(𝛾 → (𝜑𝜓))    &   (𝛾 → ∃𝑥𝜑)       (𝛾𝜓)
 
Theoremexe-P7r.RC 1002 Inference Form of exe-P7r 998.
𝑥𝜓    &   (𝜑𝜓)    &   𝑥𝜑       𝜓
 
Theoremexe-P7r.RC.VR 1003* exe-P7r.RC 1002 with variable restriction.

'𝑥' cannot occur in '𝜓'.

(𝜑𝜓)    &   𝑥𝜑       𝜓
 
8.3.2.1  alle-P7 and exi-P7 Combined.
 
Theoremalleexi-P7 1004 '' Elimination and '' Introduction Combined.
(𝛾 → ∀𝑥𝜑)       (𝛾 → ∃𝑥𝜑)
 
Theoremalleexi-P7.RC 1005 Inference Form of alleexi-P7 1004.
𝑥𝜑       𝑥𝜑
 
Theoremalleexi-P7.CL 1006 Closed Form of alleexi-P7 1004.
(∀𝑥𝜑 → ∃𝑥𝜑)
 
8.3.2.2  Variants of alli-P7 and exe-P7.
 
Theoremallic-P7 1007 Introduce Universal Quantifier as Consequent.

The inference form is alli-P7r 990.

𝑥𝛾    &   𝑥𝜑    &   (𝛾 → (𝜑𝜓))       (𝛾 → (𝜑 → ∀𝑥𝜓))
 
Theoremallic-P7.VR1of2 1008* allic-P7 1007 with one variable restriction.

'𝑥' cannot occur in '𝛾'.

𝑥𝜑    &   (𝛾 → (𝜑𝜓))       (𝛾 → (𝜑 → ∀𝑥𝜓))
 
Theoremallic-P7.VR2of2 1009* allic-P7 1007 with one variable restriction.

'𝑥' cannot occur in '𝜑'.

𝑥𝛾    &   (𝛾 → (𝜑𝜓))       (𝛾 → (𝜑 → ∀𝑥𝜓))
 
Theoremallic-P7.VR12of2 1010* allic-P7 1007 with two variable restrictions.

'𝑥' cannot occur in either '𝛾' or '𝜑'.

(𝛾 → (𝜑𝜓))       (𝛾 → (𝜑 → ∀𝑥𝜓))
 
Theoremexia-P7r 1011 Introduce Existential Quantifier as Antecedent.

This is the restatement of a previously proven result. Do not use in proofs. Use exia-P7 953 instead.

𝑥𝛾    &   𝑥𝜓    &   (𝛾 → (𝜑𝜓))       (𝛾 → (∃𝑥𝜑𝜓))
 
Theoremexia-P7r.VR1of2 1012* exia-P7r 1011 with one variable restriction.

'𝑥' cannot occur in '𝛾'.

𝑥𝜓    &   (𝛾 → (𝜑𝜓))       (𝛾 → (∃𝑥𝜑𝜓))
 
Theoremexia-P7r.VR2of2 1013* exia-P7r 1011 with one variable restriction.

'𝑥' cannot occur in '𝜓'.

𝑥𝛾    &   (𝛾 → (𝜑𝜓))       (𝛾 → (∃𝑥𝜑𝜓))
 
Theoremexia-P7r.VR12of2 1014* exia-P7r 1011 with two variable restrictions.

'𝑥' cannot occur in either '𝛾' or '𝜓'.

(𝛾 → (𝜑𝜓))       (𝛾 → (∃𝑥𝜑𝜓))
 
Theoremexia-P7r.RC 1015 Inference Form of exia-P7r 1011.

This is the restatement of a previously proven result. Do not use in proofs. Use exia-P7 953 instead.

𝑥𝜓    &   (𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexia-P7r.RC.VR 1016* exia-P7r.RC 1015 with variable restriction.

'𝑥' cannot occur in '𝜓'.

(𝜑𝜓)       (∃𝑥𝜑𝜓)
 
8.3.3  Distributive Laws Producing Universal Quantifiers.
 
Theoremalloverim-P7r 1017 '𝑥' Distributes Over ''.

The closed form is axL4-P7 945.

This is the restatement of a previously proven result. Do not use in proofs. Use alloverim-P7 970 instead.

(𝛾 → ∀𝑥(𝜑𝜓))       (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓))
 
Theoremalloverim-P7r.RC 1018 Inference Form of alloverim-P7r 1017.
𝑥(𝜑𝜓)       (∀𝑥𝜑 → ∀𝑥𝜓)
 
Theoremalloverim-P7r.GENF 1019 alloverim-P7r 1017 with generalization augmentation (non-freeness condition).

This is the restatement of a previously proven result. Do not use in proofs. Use alloverim-P7.GENF 971 instead.

𝑥𝛾    &   (𝛾 → (𝜑𝜓))       (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓))
 
Theoremalloverim-P7r.GENV 1020* alloverim-P7r 1017 with generalization augmentation (variable restriction).

'𝑥' cannot occur in '𝛾'.

(𝛾 → (𝜑𝜓))       (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓))
 
Theoremalloverim-P7r.GENF.RC 1021 Inference Form of alloverim-P7r.GENF 1019.

This is the restatement of a previously proven result. Do not use in proofs. Use alloverim-P7.GENF.RC 972 instead.

(𝜑𝜓)       (∀𝑥𝜑 → ∀𝑥𝜓)
 
Theoremdalloverim-P7 1022 Double '𝑥' Distribution Over ''.
(𝛾 → ∀𝑥(𝜑 → (𝜓𝜒)))       (𝛾 → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
 
Theoremdalloverim-P7.RC 1023 Inference Form of dalloverim-P7 1022.
𝑥(𝜑 → (𝜓𝜒))       (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
 
Theoremdalloverim-P7.CL 1024 Closed Form of dalloverim-P7 1022.
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
 
Theoremdalloverim-P7.GENF 1025 dalloverim-P7 1022 with generalization augmentation (non-freeness condition).
𝑥𝛾    &   (𝛾 → (𝜑 → (𝜓𝜒)))       (𝛾 → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
 
Theoremdalloverim-P7.GENV 1026* dalloverim-P7 1022 with generalization augmentation (variable restriction).

'𝑥' cannot occur in '𝛾'.

(𝛾 → (𝜑 → (𝜓𝜒)))       (𝛾 → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
 
Theoremdalloverim-P7.GENF.RC 1027 Inference form of dalloverim-P7.GENF 1025.
(𝜑 → (𝜓𝜒))       (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
 
8.3.4  Distributive Laws Producing Existential Quantifiers.
 
Theoremalloverimex-P7r 1028 Alternate version of alloverim-P7r 1017 that produces existential quantifiers.

The closed form is axL4ex-P7 946.

This is a restatement of a previously proven result. Do not use in proofs. Use alloverimex-P7 948 instead.

(𝛾 → ∀𝑥(𝜑𝜓))       (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓))
 
Theoremalloverimex-P7r.RC 1029 Inference Form of alloverimex-P7 948.
𝑥(𝜑𝜓)       (∃𝑥𝜑 → ∃𝑥𝜓)
 
Theoremalloverimex-P7r.GENF 1030 alloverimex-P7r 1028 with generalization augmentation (non-freeness condition).

This is a restatement of a previously proven result. Do not use in proofs. Use alloverimex-P7.GENF 949 instead.

𝑥𝛾    &   (𝛾 → (𝜑𝜓))       (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓))
 
Theoremalloverimex-P7r.GENV 1031* alloverimex-P7r 1028 with generalization augmentation (variable restriction).

'𝑥' cannot occur in '𝛾'.

(𝛾 → (𝜑𝜓))       (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓))
 
Theoremalloverimex-P7r.GENF.RC 1032 Inference Form of alloverimex-P7r.GENF 1030.

This is a restatement of a previously proven result. Do not use in proofs. Use alloverimex-P7.GENF.RC 950 instead.

(𝜑𝜓)       (∃𝑥𝜑 → ∃𝑥𝜓)
 
Theoremdalloverimex-P7 1033 Alternate version of dalloverim-P7 1022 that produces existential quantifiers.
(𝛾 → ∀𝑥(𝜑 → (𝜓𝜒)))       (𝛾 → (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)))
 
Theoremdalloverimex-P7.RC 1034 Inference Form of dalloverimex-P7 1033.
𝑥(𝜑 → (𝜓𝜒))       (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theoremdalloverimex-P7.CL 1035 Closed Form of dalloverimex-P7 1033.
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)))
 
Theoremdalloverimex-P7.GENF 1036 dalloverimex-P7 1033 with generalization augmentation (non-freeness condition).
𝑥𝛾    &   (𝛾 → (𝜑 → (𝜓𝜒)))       (𝛾 → (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)))
 
Theoremdalloverimex-P7.GENV 1037* dalloverimex-P7 1033 with generalization augmentation (variable restriction).

'𝑥' cannot occur in '𝛾'.

(𝛾 → (𝜑 → (𝜓𝜒)))       (𝛾 → (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)))
 
Theoremdalloverimex-P7.GENF.RC 1038 Inference Form of dalloverimex-P7.GENF 1036.
(𝜑 → (𝜓𝜒))       (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
8.3.5  Quantifier Substitution Laws.
 
Theoremsuball-P7r 1039 Substitution Law for '𝑥' (non-freeness condition).

This is the restatement of a previously proven result. Do not use in proofs. Use suball-P7 973 instead.

𝑥𝛾    &   (𝛾 → (𝜑𝜓))       (𝛾 → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
 
Theoremsuball-P7r.VR 1040* Substitution Law for '𝑥' (variable restriction).

'𝑥' cannot occur in '𝛾'.

(𝛾 → (𝜑𝜓))       (𝛾 → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
 
Theoremsuball-P7r.RC 1041 Inference Form of suball-P7r 1039.

This is the restatement of a previously proven result. Do not use in proofs. Use suball-P7.RC 974 instead.

(𝜑𝜓)       (∀𝑥𝜑 ↔ ∀𝑥𝜓)
 
Theoremsubex-P7 1042 Substitution Law for '𝑥' (non-freeness condition).
𝑥𝛾    &   (𝛾 → (𝜑𝜓))       (𝛾 → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
 
Theoremsubex-P7.VR 1043* Substitution Law for '𝑥' (variable restriction).

'𝑥' cannot occur in '𝛾'.

(𝛾 → (𝜑𝜓))       (𝛾 → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
 
Theoremsubex-P7.RC 1044 Inference Form of subex-P7 1042.
(𝜑𝜓)       (∃𝑥𝜑 ↔ ∃𝑥𝜓)
 
8.3.6  Dual Properties of Universal / Existential Quantification.

'(∃𝑥𝜑 ↔ ¬ ∀¬ 𝜑)' is dfexists-P7 959.

 
Theoremallnegex-P7r 1045 "For all not" is Equivalent to "Does not exist".

This statement is deducible with intuitionist logic.

This is the restatement of a previously proven result. Do not use in proofs. Use allnegex-P7 958 instead.

(∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
 
Theoremexnegall-P7 1046 "There exists a negative" is Equivalent to "Not for all".

This statement is not deducible with intuitionist logic.

(∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
 
Theoremexnegallint-P7 1047 "There exists a negative" Implies "Not for all".

This direction is deducible with intuitionist logic.

(∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑)
 
Theoremallasex-P7 1048 Dual of dfexists-P7 959.

This statement is not deducible with intuitionist logic.

(∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)
 
8.3.7  Quantified Implication Equivalence Laws.
 
Theoremqimeqallhalf-P7r 1049 Partial Quantified Implication Equivalence Law ( ( E U ) U ).

The reverse implication is also true if '𝑥' is ENF in either '𝜑' (see qimeqalla-P7 1050) or '𝜓' (see qimeqallb-P7r 1052).

This is the restatement of a previously proven result. Do not use in proofs. Use qimeqallhalf-P7 975 instead.

((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
 
Theoremqimeqalla-P7 1050 Quantified Implication Equivalence Law ( U ( E U ) ) (non-freeness condition a).
𝑥𝜑       (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
 
Theoremqimeqalla-P7.VR 1051* qimeqalla-P7 1050 with variable restriction.

'𝑥' cannot occur in '𝜑'.

(∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
 
Theoremqimeqallb-P7r 1052 Quantified Implication Equivalence Law ( U ( E U ) ) (non-freeness condition b).

This is the restatement of a previously proven result. Do not use in proofs. Use qimeqallb-P7 976 instead.

𝑥𝜓       (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
 
Theoremqimeqallb-P7r.VR 1053* qimeqallb-P7r 1052 with variable restriction.

'𝑥' cannot occur in '𝜓'.

(∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓))
 
Theoremqimeqex-P7-L1 1054 Lemma for qimeqex-P7 1056. [Auxiliary lemma - not displayed.]
 
Theoremqimeqex-P7-L2 1055 Lemma for qimeqex-P7 1056. [Auxiliary lemma - not displayed.]
 
Theoremqimeqex-P7 1056 Quantified Implication Equivalence Law ( E ( U E ) ).

This statement is not deducible with intuitionist logic.

(∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
 
Theoremqimeqexint-P7 1057 One Direction of Quantified Implication Equivalence Law ( E ( U E ) ).

This direction is deducible with intuitionist logic.

(∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
 
8.3.8  Quantifier Commutivity Laws.
 
Theoremallcomm-P7 1058* Universal Quantifier Commutivity.
(∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)
 
Theoremexcomm-P7 1059* Existential Quantifier Commutivity.
(∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
 
8.3.9  Change of Bound Variable Laws.
 
Theoremcbvall-P7-L1 1060* Lemma for cbvall-P7 1061. [Auxiliary lemma - not displayed.]
 
Theoremcbvall-P7 1061* Change of Bound Variable Theorem for '𝑥'.
𝑥𝜓    &   𝑦𝜑    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbvall-P7.VR1of2 1062* cbvall-P7 1061 with one variable restriction.

'𝑥' cannot occur in '𝜓'.

𝑦𝜑    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbvall-P7.VR2of2 1063* cbvall-P7 1061 with one variable restriction.

'𝑦' cannot occur in '𝜑'.

𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbvall-P7.VR12of2 1064* cbvall-P7 1061 with two variable restrictions.

'𝑥' cannot occur in '𝜓' and '𝑦' cannot occur in '𝜑'.

(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbvex-P7-L1 1065* Lemma for cbvex-P7 1066. [Auxiliary lemma - not displayed.]
 
Theoremcbvex-P7 1066* Change of Bound Variable Theorem for '𝑥'.
𝑥𝜓    &   𝑦𝜑    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theoremcbvex-P7.VR1of2 1067* cbvex-P7 1066 with one variable restriction.

'𝑥' cannot occur in '𝜓'.

𝑦𝜑    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theoremcbvex-P7.VR2of2 1068* cbvex-P7 1066 with one variable restriction.

'𝑦' cannot occur in '𝜑'.

𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theoremcbvex-P7.VR12of2 1069* cbvex-P7 1066 with two variable restrictions.

'𝑥' cannot occur in '𝜓' and '𝑦' cannot occur in '𝜑'.

(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
8.3.9.1  Proper Substitution Variants of cbvall-P7 and cbvex-P7.
 
Theoremcbvallpsub-P7 1070* Change of Bound Variable for '𝑥' with Proper Substitution.
𝑦𝜑       (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremcbvallpsub-P7.VR 1071* cbvallpsub-P7 1070 with variable restriction.

'𝑦' cannot occur in '𝜑'.

(∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 
Theoremcbvexpsub-P7 1072* Change of Bound Variable for '𝑥' with Proper Substitution.
𝑦𝜑       (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
 
Theoremcbvexpsub-P7.VR 1073* cbvexpsub-P7 1072 with variable restriction.

'𝑦' cannot occur in '𝜑'.

(∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
 
8.4  Examples.
 
8.4.1  Conditional Non-Freeness Does Not Always Imply Effective Non-Freeness.
 
Theoremexample-E7.1a 1074* '𝑥' is conditionally not free in the statement '(𝑥𝑦) = 0' when '𝑦 = 0'.

Since no arithmetic axioms have been introduced, we state '(𝑥 ⋅ 0) = 0' as a hypothesis.

(𝑥 ⋅ 0) = 0       (𝑦 = 0 → Ⅎ𝑥 (𝑥𝑦) = 0)
 
Theoremexample-E7.1b 1075* '𝑥' is effectively free in the statement '(𝑥𝑦 = 0)'.

Note that if we could show '𝑥(𝑥𝑦) = 0', then we would also be able to show that '𝑦𝑥(𝑥𝑦) = 0', which would contradict the conclusion of this example. This means that, without any extra hypotheses, '𝑥' is effectively free (and thus also grammatically free, obviously) in the WFF '(𝑥𝑦) = 0'. However, adding the open hypothesis '𝑦 = 0', either as a theorem hypothesis or as an antecedent, causes '𝑥' to become effectively not free in '(𝑥𝑦) = 0'. This is why we say that '𝑥' is *conditionally* not free in '𝜑' when we can deduce '𝑥𝜑' with the addition of one or more hypotheses, but cannot do so working strictly from axioms.

Since no arithmetic axioms have been introduced, we state '(0 ⋅ 𝑦) = 0' as a hypothesis. We also state '¬ ∀𝑥𝑦(𝑥𝑦) = 0' as a hypothesis. With the Peano Axioms, we will define '1'. The second hypothesis then follows from the case '¬ (11) = 0'.

(0 ⋅ 𝑦) = 0    &    ¬ ∀𝑥𝑦 (𝑥𝑦) = 0        ¬ ∀𝑦𝑥 (𝑥𝑦) = 0
 
PART 9  Chapter 8: Predicate Calculus (Continued)
 
9.1  Revisiting Chapter 6.
 
9.1.1  "General For" / "Not Free" Conversion.
 
9.1.1.1  Standard Forms.
 
Theoremnfrgen-P8 1076 ENF General For.

The inference form is axGEN-P7 933.

This is the restatement of a previously proven result. Do not use in proofs. Use nfrgen-P7 928 instead.

𝑥𝜑    &   (𝛾𝜑)       (𝛾 → ∀𝑥𝜑)
 
Theoremnfrgen-P7.VR 1077* nfrgen-P8 1076 with variable restriction.

'𝑥' cannot occur in '𝜑'.

(𝛾𝜑)       (𝛾 → ∀𝑥𝜑)
 
Theoremnfrgen-P8.CL 1078 Closed Form of nfrgen-P8 1076.

The variable restricted form is axL5-P7 934.

This is the restatement of a previously proven result. Do not use in proofs. Use nfrgen-P7.CL 930 instead.

𝑥𝜑       (𝜑 → ∀𝑥𝜑)
 
Theoremgennfr-P8 1079 General For ENF.
(𝜑 → ∀𝑥𝜑)       𝑥𝜑
 
9.1.1.2  Dual Forms.
 
Theoremnfrexgen-P8 1080 Dual Form of nfrgen-P8 1076.

This is the restatement of a previously proven result. Do not use in proofs. Use nfrexgen-P7 931 instead.

𝑥𝜑    &   (𝛾 → ∃𝑥𝜑)       (𝛾𝜑)
 
Theoremnfrexgen-P8.VR 1081* nfrexgen-P8 1080 with variable restriction.

'𝑥' cannot occur in '𝜑'.

(𝛾 → ∃𝑥𝜑)       (𝛾𝜑)
 
Theoremnfrexgen-P8.RC 1082 Inference Form of nfrexgen-P8 1080.
𝑥𝜑    &   𝑥𝜑       𝜑
 
Theoremnfrexgen-P8.RC.VR 1083* nfrexgen-P8.RC 1082 with variable restriction.

'𝑥' cannot occur in '𝜑'

𝑥𝜑       𝜑
 
Theoremnfrexgen-P8.CL 1084 Closed Form of nfrexgen-P8 1080.

The variable restricted form is axL5ex-P7 935.

This is the restatement of a previously proven result. Do not use in proofs. Use nfrexgen-P7.CL 932 instead.

𝑥𝜑       (∃𝑥𝜑𝜑)
 
Theoremexgennfr-P8 1085 Dual Form of gennfr-P8 1079.
(∃𝑥𝜑𝜑)       𝑥𝜑
 
9.1.1.3  Combined Forms.
 
Theoremnfrexall-P8 1086 Combining of nfrgen-P8 1076 and nfrexgen-P8 1080.
𝑥𝜑    &   (𝛾 → ∃𝑥𝜑)       (𝛾 → ∀𝑥𝜑)
 
Theoremnfrexall-P8.VR 1087* nfrexall-P8 1086 with variable restriction.

'𝑥' cannot occur in '𝜑'.

(𝛾 → ∃𝑥𝜑)       (𝛾 → ∀𝑥𝜑)
 
Theoremnfrexall-P8.RC 1088 Inference form of nfrexall-P8 1086.
𝑥𝜑    &   𝑥𝜑       𝑥𝜑
 
Theoremnfrexall-P8.RC.VR 1089* nfrexall-P8.RC 1088 with variable restriction .

'𝑥' cannot occur in '𝜑'.

𝑥𝜑       𝑥𝜑
 
Theoremnfrexall-P8.CL 1090 Closed Form of nfrexall-P8 1086.
𝑥𝜑       (∃𝑥𝜑 → ∀𝑥𝜑)
 
Theoremnfrexall-P8.CL.VR 1091* nfrexall-P8.CL 1090 with variable restriction .

'𝑥' cannot occur in '𝜑'.

(∃𝑥𝜑 → ∀𝑥𝜑)
 
Theoremexallnfr-P8 1092 Converse of nfrexall-P8.CL 1090.
(∃𝑥𝜑 → ∀𝑥𝜑)       𝑥𝜑
 
9.1.2  Nested Quantifier Idempotency Laws.
 
Theoremidempotall-P8 1093 Idempotency Law for '𝑥'.
(∀𝑥𝑥𝜑 ↔ ∀𝑥𝜑)
 
Theoremidempotex-P8 1094 Idempotency Law for '𝑥'.
(∃𝑥𝑥𝜑 ↔ ∃𝑥𝜑)
 
Theoremidempotallex-P8 1095 Idempotency Law for '𝑥' over '𝑥'.
(∀𝑥𝑥𝜑 ↔ ∃𝑥𝜑)
 
Theoremidempotexall-P8 1096 Idempotency Law for '𝑥' over '𝑥'.
(∃𝑥𝑥𝜑 ↔ ∀𝑥𝜑)
 
Theoremidempotallnall-P8 1097 Idempotency Law for '𝑥' over '¬ ∀𝑥'.
(∀𝑥 ¬ ∀𝑥𝜑 ↔ ¬ ∀𝑥𝜑)
 
Theoremidempotexnex-P8 1098 Idempotency Law for '𝑥' over '¬ ∃𝑥'.
(∃𝑥 ¬ ∃𝑥𝜑 ↔ ¬ ∃𝑥𝜑)
 
Theoremidempotallnex-P8 1099 Idempotency Law for '𝑥' over '¬ ∃𝑥'.
(∀𝑥 ¬ ∃𝑥𝜑 ↔ ¬ ∃𝑥𝜑)
 
Theoremidempotexnall-P8 1100 Idempotency Law for '𝑥' over '¬ ∀𝑥'.
(∃𝑥 ¬ ∀𝑥𝜑 ↔ ¬ ∀𝑥𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1125
  Copyright terms: Public domain < Previous  Next >