| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > axL4ex-P7 | |||
| Description: Existential Form of axL4-P7 945. † |
| Ref | Expression |
|---|---|
| axL4ex-P7 | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnfrall1-P7.7 832 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝜓) | |
| 2 | alle-P7.CL 942 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | lemma-L7.02a 944 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| 4 | ndexi-P7.19.CL 910 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜓 → ∃𝑥𝜓) | |
| 5 | 4 | rcp-NDIMP0addall 207 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜓 → ∃𝑥𝜓)) |
| 6 | 3, 5 | syl-P3.24 259 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜓)) |
| 7 | 6 | rcp-NDIMP1add1 208 | . . 3 ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥𝜑) → ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜓)) |
| 8 | rcp-NDASM2of2 194 | . . 3 ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥𝜑) → ∃𝑥𝜑) | |
| 9 | 7, 8 | ndexew-P7.VR123of3 874 | . 2 ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥𝜑) → ∃𝑥𝜓) |
| 10 | 9 | rcp-NDIMI2 224 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 ∀wff-forall 8 → wff-imp 10 ∧ wff-and 132 ∃wff-exists 595 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: alloverimex-P7 948 qimeqallb-P7 976 |
| Copyright terms: Public domain | W3C validator |