PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  df-psub-D6.2

Definition df-psub-D6.2 716
Description: Definition of Proper Substitution, '[𝑡 / 𝑥]𝜑'. Read as "The formula resulting from properly substituting '𝑡' for '𝑥' in '𝜑'".

'𝑦' is distinct from all other variables.

Assertion
Ref Expression
df-psub-D6.2 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable groups:   𝜑,𝑦   𝑡,𝑦   𝑥,𝑦

Detailed syntax breakdown of Definition df-psub-D6.2
StepHypRef Expression
1 wff-ph . . 3 wff 𝜑
2 term-t . . 3 term 𝑡
3 objvar-x . . 3 objvar 𝑥
41, 2, 3wff-psub 714 . 2 wff [𝑡 / 𝑥]𝜑
5 objvar-y . . . . . 6 objvar 𝑦
65term-obj 1 . . . . 5 term 𝑦
76, 2wff-equals 6 . . . 4 wff 𝑦 = 𝑡
83term-obj 1 . . . . . . 7 term 𝑥
98, 6wff-equals 6 . . . . . 6 wff 𝑥 = 𝑦
109, 1wff-imp 10 . . . . 5 wff (𝑥 = 𝑦𝜑)
1110, 3wff-forall 8 . . . 4 wff 𝑥(𝑥 = 𝑦𝜑)
127, 11wff-imp 10 . . 3 wff (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))
1312, 5wff-forall 8 . 2 wff 𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))
144, 13wff-bi 104 1 wff ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff objvar term class
This definition is referenced by:  dfpsubv-P6  717  exipsub-P6  720  specpsub-P6  721  isubtopsub-P6  729  psubtoisub-P6  765  dfpsubalt-P6  774  psubleq-P6  783  psubnfr-P6  784  psubthm-P6  786  psubneg-P6  788  psubim-P6-L1  789
  Copyright terms: Public domain W3C validator