| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > df-psub-D6.2 | |||
| Description: Definition of Proper
Substitution, '[𝑡 / 𝑥]𝜑'. Read
as
"The formula resulting from properly substituting '𝑡' for '𝑥' in
'𝜑'".
'𝑦' is distinct from all other variables. |
| Ref | Expression |
|---|---|
| df-psub-D6.2 | ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wff-ph | . . 3 wff 𝜑 | |
| 2 | term-t | . . 3 term 𝑡 | |
| 3 | objvar-x | . . 3 objvar 𝑥 | |
| 4 | 1, 2, 3 | wff-psub 714 | . 2 wff [𝑡 / 𝑥]𝜑 |
| 5 | objvar-y | . . . . . 6 objvar 𝑦 | |
| 6 | 5 | term-obj 1 | . . . . 5 term 𝑦 |
| 7 | 6, 2 | wff-equals 6 | . . . 4 wff 𝑦 = 𝑡 |
| 8 | 3 | term-obj 1 | . . . . . . 7 term 𝑥 |
| 9 | 8, 6 | wff-equals 6 | . . . . . 6 wff 𝑥 = 𝑦 |
| 10 | 9, 1 | wff-imp 10 | . . . . 5 wff (𝑥 = 𝑦 → 𝜑) |
| 11 | 10, 3 | wff-forall 8 | . . . 4 wff ∀𝑥(𝑥 = 𝑦 → 𝜑) |
| 12 | 7, 11 | wff-imp 10 | . . 3 wff (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 13 | 12, 5 | wff-forall 8 | . 2 wff ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 14 | 4, 13 | wff-bi 104 | 1 wff ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Colors of variables: wff objvar term class |
| This definition is referenced by: dfpsubv-P6 717 exipsub-P6 720 specpsub-P6 721 isubtopsub-P6 729 psubtoisub-P6 765 dfpsubalt-P6 774 psubleq-P6 783 psubnfr-P6 784 psubthm-P6 786 psubneg-P6 788 psubim-P6-L1 789 |
| Copyright terms: Public domain | W3C validator |