PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubtoisub-P6

Theorem psubtoisub-P6 765
Description: Conversion from Explicit to Implicit Substitution.

This theorem holds even when '𝑡' contains '𝑥'.

Assertion
Ref Expression
psubtoisub-P6 (𝑥 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑))

Proof of Theorem psubtoisub-P6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfrv-P6 686 . . 3 𝑦𝜑
21lemma-L6.05a 764 . 2 (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))))
3 df-psub-D6.2 716 . . . 4 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
43bisym-P3.33b.RC 299 . . 3 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ [𝑡 / 𝑥]𝜑)
54subbir-P3.41b.RC 335 . 2 ((𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))) ↔ (𝜑 ↔ [𝑡 / 𝑥]𝜑))
62, 5subimr2-P4.RC 543 1 (𝑥 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubcomp-P6  767  cbvallpsub-P6  768  cbvexpsub-P6  769  psuball2v-P6-L1  795  psubsuccv-P6-L1  805  psubaddv-P6-L1  807  psubmultv-P6-L1  809
  Copyright terms: Public domain W3C validator