| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > psubtoisub-P6 | |||
| Description: Conversion from Explicit
to Implicit Substitution.
This theorem holds even when '𝑡' contains '𝑥'. |
| Ref | Expression |
|---|---|
| psubtoisub-P6 | ⊢ (𝑥 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrv-P6 686 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | lemma-L6.05a 764 | . 2 ⊢ (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| 3 | df-psub-D6.2 716 | . . . 4 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 4 | 3 | bisym-P3.33b.RC 299 | . . 3 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ [𝑡 / 𝑥]𝜑) |
| 5 | 4 | subbir-P3.41b.RC 335 | . 2 ⊢ ((𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) ↔ (𝜑 ↔ [𝑡 / 𝑥]𝜑)) |
| 6 | 2, 5 | subimr2-P4.RC 543 | 1 ⊢ (𝑥 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: psubcomp-P6 767 cbvallpsub-P6 768 cbvexpsub-P6 769 psuball2v-P6-L1 795 psubsuccv-P6-L1 805 psubaddv-P6-L1 807 psubmultv-P6-L1 809 |
| Copyright terms: Public domain | W3C validator |