PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L6.05a

Theorem lemma-L6.05a 764
Description: This lemma is the result of solvedsub-P6b 713 with no hypothesis required.

'𝑦' cannot occur in '𝑡'.

Hypothesis
Ref Expression
lemma-L6.05a.1 𝑦𝜑
Assertion
Ref Expression
lemma-L6.05a (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))))
Distinct variable groups:   𝑡,𝑦   𝑥,𝑦

Proof of Theorem lemma-L6.05a
StepHypRef Expression
1 lemma-L6.05a.1 . 2 𝑦𝜑
2 nfrall1-P6 741 . 2 𝑦𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))
3 lemma-L6.01a 724 . 2 (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
4 lemma-L6.01a 724 . 2 (𝑦 = 𝑡 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))))
51, 2, 3, 4trnsvsub-P6 763 1 (𝑥 = 𝑡 → (𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  psubtoisub-P6  765
  Copyright terms: Public domain W3C validator