PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  df-exists-D5.1

Definition df-exists-D5.1 596
Description: Definition of Existential Quantifier, ''. Read as "there exists".
Assertion
Ref Expression
df-exists-D5.1 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)

Detailed syntax breakdown of Definition df-exists-D5.1
StepHypRef Expression
1 wff-ph . . 3 wff 𝜑
2 objvar-x . . 3 objvar 𝑥
31, 2wff-exists 595 . 2 wff 𝑥𝜑
41wff-neg 9 . . . 4 wff ¬ 𝜑
54, 2wff-forall 8 . . 3 wff 𝑥 ¬ 𝜑
65wff-neg 9 . 2 wff ¬ ∀𝑥 ¬ 𝜑
73, 6wff-bi 104 1 wff (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
Colors of variables: wff objvar term class
This definition is referenced by:  allnegex-P5  597  exnegall-P5  598  lemma-L5.01a  600  axL6ex-P5  625  cbvexv-P5  660  exiw-P5  662  genex-P6  731  cbvex-P6  752  psubex2v-P6  797  nfrexgencl-L6  813
  Copyright terms: Public domain W3C validator