| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > df-exists-D5.1 | |||
| Description: Definition of Existential Quantifier, '∃'. Read as "there exists". |
| Ref | Expression |
|---|---|
| df-exists-D5.1 | ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wff-ph | . . 3 wff 𝜑 | |
| 2 | objvar-x | . . 3 objvar 𝑥 | |
| 3 | 1, 2 | wff-exists 595 | . 2 wff ∃𝑥𝜑 |
| 4 | 1 | wff-neg 9 | . . . 4 wff ¬ 𝜑 |
| 5 | 4, 2 | wff-forall 8 | . . 3 wff ∀𝑥 ¬ 𝜑 |
| 6 | 5 | wff-neg 9 | . 2 wff ¬ ∀𝑥 ¬ 𝜑 |
| 7 | 3, 6 | wff-bi 104 | 1 wff (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
| Colors of variables: wff objvar term class |
| This definition is referenced by: allnegex-P5 597 exnegall-P5 598 lemma-L5.01a 600 axL6ex-P5 625 cbvexv-P5 660 exiw-P5 662 genex-P6 731 cbvex-P6 752 psubex2v-P6 797 nfrexgencl-L6 813 |
| Copyright terms: Public domain | W3C validator |