PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrexgencl-L6

Theorem nfrexgencl-L6 813
Description: Closed Form of nfrexgen-P6 735.
Assertion
Ref Expression
nfrexgencl-L6 (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))

Proof of Theorem nfrexgencl-L6
StepHypRef Expression
1 nfrgencl-L6 811 . . 3 (Ⅎ𝑥 ¬ 𝜑 → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
21trnsp-P3.31b 282 . 2 (Ⅎ𝑥 ¬ 𝜑 → (¬ ∀𝑥 ¬ 𝜑𝜑))
3 nfrneg-P6 688 . 2 (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑)
4 df-exists-D5.1 596 . . . 4 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
54bisym-P3.33b.RC 299 . . 3 (¬ ∀𝑥 ¬ 𝜑 ↔ ∃𝑥𝜑)
65subiml-P3.40a.RC 326 . 2 ((¬ ∀𝑥 ¬ 𝜑𝜑) ↔ (∃𝑥𝜑𝜑))
72, 3, 6subimd2-P4.RC 545 1 (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrex2d-P6  820
  Copyright terms: Public domain W3C validator