| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrexgencl-L6 | |||
| Description: Closed Form of nfrexgen-P6 735. |
| Ref | Expression |
|---|---|
| nfrexgencl-L6 | ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrgencl-L6 811 | . . 3 ⊢ (Ⅎ𝑥 ¬ 𝜑 → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 2 | 1 | trnsp-P3.31b 282 | . 2 ⊢ (Ⅎ𝑥 ¬ 𝜑 → (¬ ∀𝑥 ¬ 𝜑 → 𝜑)) |
| 3 | nfrneg-P6 688 | . 2 ⊢ (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑) | |
| 4 | df-exists-D5.1 596 | . . . 4 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 5 | 4 | bisym-P3.33b.RC 299 | . . 3 ⊢ (¬ ∀𝑥 ¬ 𝜑 ↔ ∃𝑥𝜑) |
| 6 | 5 | subiml-P3.40a.RC 326 | . 2 ⊢ ((¬ ∀𝑥 ¬ 𝜑 → 𝜑) ↔ (∃𝑥𝜑 → 𝜑)) |
| 7 | 2, 3, 6 | subimd2-P4.RC 545 | 1 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: nfrex2d-P6 820 |
| Copyright terms: Public domain | W3C validator |