PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subimd2-P4.RC

Theorem subimd2-P4.RC 545
Description: Inference Form of subimd2-P4 544.
Hypotheses
Ref Expression
subimd2-P4.RC.1 (𝜑𝜒)
subimd2-P4.RC.2 (𝜑𝜓)
subimd2-P4.RC.3 (𝜒𝜗)
Assertion
Ref Expression
subimd2-P4.RC (𝜓𝜗)

Proof of Theorem subimd2-P4.RC
StepHypRef Expression
1 subimd2-P4.RC.1 . . . 4 (𝜑𝜒)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜒))
3 subimd2-P4.RC.2 . . . 4 (𝜑𝜓)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
5 subimd2-P4.RC.3 . . . 4 (𝜒𝜗)
65ndtruei-P3.17 182 . . 3 (⊤ → (𝜒𝜗))
72, 4, 6subimd2-P4 544 . 2 (⊤ → (𝜓𝜗))
87ndtruee-P3.18 183 1 (𝜓𝜗)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  lemma-L5.05a  668  genallw-P6  676  genexw-P6  677  gennallw-P6  678  gennexw-P6  679  gennex-P6  738  nfrexgencl-L6  813
  Copyright terms: Public domain W3C validator