PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  gennallw-P6

Theorem gennallw-P6 678
Description: The WFF '¬ ∀𝑥𝜑' is General for '𝑥' (weakened form).

Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'.

Hypothesis
Ref Expression
gennallw-P6.1 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
Assertion
Ref Expression
gennallw-P6 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
Distinct variable groups:   𝜑,𝑥₁   𝜑₁,𝑥   𝑥,𝑥₁

Proof of Theorem gennallw-P6
StepHypRef Expression
1 gennallw-P6.1 . . . 4 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
21subneg-P3.39 323 . . 3 (𝑥 = 𝑥₁ → (¬ 𝜑 ↔ ¬ 𝜑₁))
32genexw-P6 677 . 2 (∃𝑥 ¬ 𝜑 → ∀𝑥𝑥 ¬ 𝜑)
4 exnegall-P5 598 . 2 (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
54suballinf-P5 594 . 2 (∀𝑥𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ ∀𝑥𝜑)
63, 4, 5subimd2-P4.RC 545 1 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  exgenallw-P6  680
  Copyright terms: Public domain W3C validator