| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > gennallw-P6 | |||
| Description: The WFF '¬ ∀𝑥𝜑' is General for '𝑥' (weakened form).
Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'. |
| Ref | Expression |
|---|---|
| gennallw-P6.1 | ⊢ (𝑥 = 𝑥₁ → (𝜑 ↔ 𝜑₁)) |
| Ref | Expression |
|---|---|
| gennallw-P6 | ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gennallw-P6.1 | . . . 4 ⊢ (𝑥 = 𝑥₁ → (𝜑 ↔ 𝜑₁)) | |
| 2 | 1 | subneg-P3.39 323 | . . 3 ⊢ (𝑥 = 𝑥₁ → (¬ 𝜑 ↔ ¬ 𝜑₁)) |
| 3 | 2 | genexw-P6 677 | . 2 ⊢ (∃𝑥 ¬ 𝜑 → ∀𝑥∃𝑥 ¬ 𝜑) |
| 4 | exnegall-P5 598 | . 2 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
| 5 | 4 | suballinf-P5 594 | . 2 ⊢ (∀𝑥∃𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ ∀𝑥𝜑) |
| 6 | 3, 4, 5 | subimd2-P4.RC 545 | 1 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: exgenallw-P6 680 |
| Copyright terms: Public domain | W3C validator |