| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ax-L4 | |||
| Description: Axiom of Quantified Implication. |
| Ref | Expression |
|---|---|
| ax-L4 | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wff-ph | . . . 4 wff 𝜑 | |
| 2 | wff-ps | . . . 4 wff 𝜓 | |
| 3 | 1, 2 | wff-imp 10 | . . 3 wff (𝜑 → 𝜓) |
| 4 | objvar-x | . . 3 objvar 𝑥 | |
| 5 | 3, 4 | wff-forall 8 | . 2 wff ∀𝑥(𝜑 → 𝜓) |
| 6 | 1, 4 | wff-forall 8 | . . 3 wff ∀𝑥𝜑 |
| 7 | 2, 4 | wff-forall 8 | . . 3 wff ∀𝑥𝜓 |
| 8 | 6, 7 | wff-imp 10 | . 2 wff (∀𝑥𝜑 → ∀𝑥𝜓) |
| 9 | 5, 8 | wff-imp 10 | 1 wff (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| This axiom is referenced by: alloverim-P5 588 qimeqallav-P5-L1 617 qimeqalla-P6-L1 698 |
| Copyright terms: Public domain | W3C validator |