PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ax-L4

Axiom ax-L4 16
Description: Axiom of Quantified Implication.
Assertion
Ref Expression
ax-L4 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))

Detailed syntax breakdown of Axiom ax-L4
StepHypRef Expression
1 wff-ph . . . 4 wff 𝜑
2 wff-ps . . . 4 wff 𝜓
31, 2wff-imp 10 . . 3 wff (𝜑𝜓)
4 objvar-x . . 3 objvar 𝑥
53, 4wff-forall 8 . 2 wff 𝑥(𝜑𝜓)
61, 4wff-forall 8 . . 3 wff 𝑥𝜑
72, 4wff-forall 8 . . 3 wff 𝑥𝜓
86, 7wff-imp 10 . 2 wff (∀𝑥𝜑 → ∀𝑥𝜓)
95, 8wff-imp 10 1 wff (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff objvar term class
This axiom is referenced by:  alloverim-P5  588  qimeqallav-P5-L1  617  qimeqalla-P6-L1  698
  Copyright terms: Public domain W3C validator