PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qimeqallav-P5-L1

Theorem qimeqallav-P5-L1 617
Description: Lemma for qimeqallav-P5 618.
Assertion
Ref Expression
qimeqallav-P5-L1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))
Distinct variable group:   𝜑,𝑥

Proof of Theorem qimeqallav-P5-L1
StepHypRef Expression
1 axL5ex-P5 613 . . 3 (∃𝑥𝜑𝜑)
21rcp-NDIMP0addall 207 . 2 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑𝜑))
3 ax-L5 17 . . 3 (𝜑 → ∀𝑥𝜑)
43rcp-NDIMP0addall 207 . 2 (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜑))
5 ax-L4 16 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
62, 4, 5dsyl-P3.25 261 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L4 16  ax-L5 17
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  qimeqallav-P5  618
  Copyright terms: Public domain W3C validator