| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > qimeqallav-P5-L1 | |||
| Description: Lemma for qimeqallav-P5 618. |
| Ref | Expression |
|---|---|
| qimeqallav-P5-L1 | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axL5ex-P5 613 | . . 3 ⊢ (∃𝑥𝜑 → 𝜑) | |
| 2 | 1 | rcp-NDIMP0addall 207 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜑)) |
| 3 | ax-L5 17 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 4 | 3 | rcp-NDIMP0addall 207 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜑)) |
| 5 | ax-L4 16 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
| 6 | 2, 4, 5 | dsyl-P3.25 261 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-L4 16 ax-L5 17 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: qimeqallav-P5 618 |
| Copyright terms: Public domain | W3C validator |