| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > exiav-P5.SH | |||
| Description: Inference Form of exiav-P5 615. |
| Ref | Expression |
|---|---|
| exiav-P5.SH.1 | ⊢ (𝜑 → 𝜓) |
| exiav-P5.SH.2 | ⊢ ∃𝑥𝜑 |
| Ref | Expression |
|---|---|
| exiav-P5.SH | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exiav-P5.SH.2 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | exiav-P5.SH.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | exiav-P5 615 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) |
| 4 | 1, 3 | rcp-NDIME0 228 | 1 ⊢ 𝜓 |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: eqref-P5 626 exi-P6 718 nfrsucc-P6 780 nfradd-P6 781 nfrmult-P6 782 psubsuccv-P6-L1 805 psubaddv-P6-L1 807 psubmultv-P6-L1 809 |
| Copyright terms: Public domain | W3C validator |