PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exiav-P5.SH

Theorem exiav-P5.SH 616
Description: Inference Form of exiav-P5 615.
Hypotheses
Ref Expression
exiav-P5.SH.1 (𝜑𝜓)
exiav-P5.SH.2 𝑥𝜑
Assertion
Ref Expression
exiav-P5.SH 𝜓
Distinct variable group:   𝜓,𝑥

Proof of Theorem exiav-P5.SH
StepHypRef Expression
1 exiav-P5.SH.2 . 2 𝑥𝜑
2 exiav-P5.SH.1 . . 3 (𝜑𝜓)
32exiav-P5 615 . 2 (∃𝑥𝜑𝜓)
41, 3rcp-NDIME0 228 1 𝜓
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  eqref-P5  626  exi-P6  718  nfrsucc-P6  780  nfradd-P6  781  nfrmult-P6  782  psubsuccv-P6-L1  805  psubaddv-P6-L1  807  psubmultv-P6-L1  809
  Copyright terms: Public domain W3C validator