| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > exi-P6 | |||
| Description: Existential Quantifier
Introduction Law.
See exiw-P5 662 for a version that requires only FOL axioms. |
| Ref | Expression |
|---|---|
| exi-P6 | ⊢ (𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-L12 29 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | alloverimex-P5.CL 604 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑)) | |
| 3 | 2 | rcp-NDIMP0addall 207 | . . . 4 ⊢ (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑))) |
| 4 | 1, 3 | syl-P3.24 259 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑))) |
| 5 | axL6ex-P5 625 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 6 | 5 | rcp-NDIMP0addall 207 | . . 3 ⊢ (𝑥 = 𝑦 → ∃𝑥 𝑥 = 𝑦) |
| 7 | 4, 6 | mae-P3.23 257 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
| 8 | axL6ex-P5 625 | . . 3 ⊢ ∃𝑦 𝑦 = 𝑥 | |
| 9 | eqsym-P5.CL.SYM 629 | . . . 4 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 10 | 9 | subexinf-P5 608 | . . 3 ⊢ (∃𝑦 𝑥 = 𝑦 ↔ ∃𝑦 𝑦 = 𝑥) |
| 11 | 8, 10 | bimpr-P4.RC 534 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 |
| 12 | 7, 11 | exiav-P5.SH 616 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: spec-P6 719 qremall-P6 722 qremex-P6 723 nfrgen-P6 733 spliteq-P6-L1 775 splitelof-P6-L1 777 nfrgencl-L6 811 qremexd-P6 823 |
| Copyright terms: Public domain | W3C validator |