PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exi-P6

Theorem exi-P6 718
Description: Existential Quantifier Introduction Law.

See exiw-P5 662 for a version that requires only FOL axioms.

Assertion
Ref Expression
exi-P6 (𝜑 → ∃𝑥𝜑)

Proof of Theorem exi-P6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-L12 29 . . . 4 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
2 alloverimex-P5.CL 604 . . . . 5 (∀𝑥(𝑥 = 𝑦𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑))
32rcp-NDIMP0addall 207 . . . 4 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑)))
41, 3syl-P3.24 259 . . 3 (𝑥 = 𝑦 → (𝜑 → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑)))
5 axL6ex-P5 625 . . . 4 𝑥 𝑥 = 𝑦
65rcp-NDIMP0addall 207 . . 3 (𝑥 = 𝑦 → ∃𝑥 𝑥 = 𝑦)
74, 6mae-P3.23 257 . 2 (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑))
8 axL6ex-P5 625 . . 3 𝑦 𝑦 = 𝑥
9 eqsym-P5.CL.SYM 629 . . . 4 (𝑥 = 𝑦𝑦 = 𝑥)
109subexinf-P5 608 . . 3 (∃𝑦 𝑥 = 𝑦 ↔ ∃𝑦 𝑦 = 𝑥)
118, 10bimpr-P4.RC 534 . 2 𝑦 𝑥 = 𝑦
127, 11exiav-P5.SH 616 1 (𝜑 → ∃𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  spec-P6  719  qremall-P6  722  qremex-P6  723  nfrgen-P6  733  spliteq-P6-L1  775  splitelof-P6-L1  777  nfrgencl-L6  811  qremexd-P6  823
  Copyright terms: Public domain W3C validator