PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  eqsym-P5.CL.SYM

Theorem eqsym-P5.CL.SYM 629
Description: Closed Symmetric Form of eqsym-P5 627.
Assertion
Ref Expression
eqsym-P5.CL.SYM (𝑡 = 𝑢𝑢 = 𝑡)

Proof of Theorem eqsym-P5.CL.SYM
StepHypRef Expression
1 eqsym-P5.CL 628 . 2 (𝑡 = 𝑢𝑢 = 𝑡)
2 eqsym-P5.CL 628 . 2 (𝑢 = 𝑡𝑡 = 𝑢)
31, 2rcp-NDBII0 239 1 (𝑡 = 𝑢𝑢 = 𝑡)
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  eqtrns-P5  630  subeqr-P5-L1  634  subeqr-P5  635  subelofl-P5  638  subelofr-P5  640  cbvallv-P5  659  specw-P5  661  lemma-L5.04a  667  exi-P6  718  cbvall-P6  751
  Copyright terms: Public domain W3C validator