| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > eqsym-P5.CL.SYM | |||
| Description: Closed Symmetric Form of eqsym-P5 627. |
| Ref | Expression |
|---|---|
| eqsym-P5.CL.SYM | ⊢ (𝑡 = 𝑢 ↔ 𝑢 = 𝑡) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsym-P5.CL 628 | . 2 ⊢ (𝑡 = 𝑢 → 𝑢 = 𝑡) | |
| 2 | eqsym-P5.CL 628 | . 2 ⊢ (𝑢 = 𝑡 → 𝑡 = 𝑢) | |
| 3 | 1, 2 | rcp-NDBII0 239 | 1 ⊢ (𝑡 = 𝑢 ↔ 𝑢 = 𝑡) |
| Colors of variables: wff objvar term class |
| Syntax hints: = wff-equals 6 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: eqtrns-P5 630 subeqr-P5-L1 634 subeqr-P5 635 subelofl-P5 638 subelofr-P5 640 cbvallv-P5 659 specw-P5 661 lemma-L5.04a 667 exi-P6 718 cbvall-P6 751 |
| Copyright terms: Public domain | W3C validator |