| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subeqr-P5-L1 | |||
| Description: Lemma for subeqr-P5 635. |
| Ref | Expression |
|---|---|
| subeqr-P5-L1 | ⊢ (𝑡 = 𝑢 → (𝑤 = 𝑡 → 𝑤 = 𝑢)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-L7 19 | . 2 ⊢ (𝑡 = 𝑢 → (𝑡 = 𝑤 → 𝑢 = 𝑤)) | |
| 2 | eqsym-P5.CL.SYM 629 | . . 3 ⊢ (𝑡 = 𝑤 ↔ 𝑤 = 𝑡) | |
| 3 | eqsym-P5.CL.SYM 629 | . . 3 ⊢ (𝑢 = 𝑤 ↔ 𝑤 = 𝑢) | |
| 4 | 2, 3 | subimd-P3.40c.RC 330 | . 2 ⊢ ((𝑡 = 𝑤 → 𝑢 = 𝑤) ↔ (𝑤 = 𝑡 → 𝑤 = 𝑢)) |
| 5 | 1, 4 | subimr2-P4.RC 543 | 1 ⊢ (𝑡 = 𝑢 → (𝑤 = 𝑡 → 𝑤 = 𝑢)) |
| Colors of variables: wff objvar term class |
| Syntax hints: = wff-equals 6 → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: subeqr-P5 635 |
| Copyright terms: Public domain | W3C validator |