PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subeqr-P5-L1

Theorem subeqr-P5-L1 634
Description: Lemma for subeqr-P5 635.
Assertion
Ref Expression
subeqr-P5-L1 (𝑡 = 𝑢 → (𝑤 = 𝑡𝑤 = 𝑢))

Proof of Theorem subeqr-P5-L1
StepHypRef Expression
1 ax-L7 19 . 2 (𝑡 = 𝑢 → (𝑡 = 𝑤𝑢 = 𝑤))
2 eqsym-P5.CL.SYM 629 . . 3 (𝑡 = 𝑤𝑤 = 𝑡)
3 eqsym-P5.CL.SYM 629 . . 3 (𝑢 = 𝑤𝑤 = 𝑢)
42, 3subimd-P3.40c.RC 330 . 2 ((𝑡 = 𝑤𝑢 = 𝑤) ↔ (𝑤 = 𝑡𝑤 = 𝑢))
51, 4subimr2-P4.RC 543 1 (𝑡 = 𝑢 → (𝑤 = 𝑡𝑤 = 𝑢))
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  subeqr-P5  635
  Copyright terms: Public domain W3C validator