PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subimr2-P4.RC

Theorem subimr2-P4.RC 543
Description: Inference Form of subimr2-P4 542.
Hypotheses
Ref Expression
subimr2-P4.RC.1 (𝜒𝜑)
subimr2-P4.RC.2 (𝜑𝜓)
Assertion
Ref Expression
subimr2-P4.RC (𝜒𝜓)

Proof of Theorem subimr2-P4.RC
StepHypRef Expression
1 subimr2-P4.RC.1 . . . 4 (𝜒𝜑)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜒𝜑))
3 subimr2-P4.RC.2 . . . 4 (𝜑𝜓)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
52, 4subimr2-P4 542 . 2 (⊤ → (𝜒𝜓))
65ndtruee-P3.18 183 1 (𝜒𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  andassoc2a-P4  568  andassoc2b-P4  570  orassoc2a-P4  572  orassoc2b-P4  574  subeqr-P5-L1  634  exiw-P5  662  example-E6.01a  706  solvesub-P6b  707  example-E6.02a  712  solvedsub-P6b  713  specpsub-P6  721  psubtoisubv-P6  725  psubtoisub-P6  765  lemma-L6.07a-L1  770  psubim-P6-L1  789  gennfrcl-L6  812  exgennfrcl-L6  814  nfrimd-P6  815  nfrandd-P6  816  nfrord-P6  817  nfrbid-P6  818  nfrall2d-P6  819  nfrex2d-P6  820  ndalli-P6  822  qremexd-P6  823  nfrgen-P7  928  alle-P7  941  exi-P7  951  qimeqex-P7-L1  1054  example-E7.1b  1075
  Copyright terms: Public domain W3C validator