| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subimr2-P4.RC | |||
| Description: Inference Form of subimr2-P4 542. † |
| Ref | Expression |
|---|---|
| subimr2-P4.RC.1 | ⊢ (𝜒 → 𝜑) |
| subimr2-P4.RC.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| subimr2-P4.RC | ⊢ (𝜒 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subimr2-P4.RC.1 | . . . 4 ⊢ (𝜒 → 𝜑) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜒 → 𝜑)) |
| 3 | subimr2-P4.RC.2 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | subimr2-P4 542 | . 2 ⊢ (⊤ → (𝜒 → 𝜓)) |
| 6 | 5 | ndtruee-P3.18 183 | 1 ⊢ (𝜒 → 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: andassoc2a-P4 568 andassoc2b-P4 570 orassoc2a-P4 572 orassoc2b-P4 574 subeqr-P5-L1 634 exiw-P5 662 example-E6.01a 706 solvesub-P6b 707 example-E6.02a 712 solvedsub-P6b 713 specpsub-P6 721 psubtoisubv-P6 725 psubtoisub-P6 765 lemma-L6.07a-L1 770 psubim-P6-L1 789 gennfrcl-L6 812 exgennfrcl-L6 814 nfrimd-P6 815 nfrandd-P6 816 nfrord-P6 817 nfrbid-P6 818 nfrall2d-P6 819 nfrex2d-P6 820 ndalli-P6 822 qremexd-P6 823 nfrgen-P7 928 alle-P7 941 exi-P7 951 qimeqex-P7-L1 1054 example-E7.1b 1075 |
| Copyright terms: Public domain | W3C validator |