PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrgen-P7

Theorem nfrgen-P7 928
Description: ENF In General For.
Hypotheses
Ref Expression
nfrgen-P7.1 𝑥𝜑
nfrgen-P7.2 (𝛾𝜑)
Assertion
Ref Expression
nfrgen-P7 (𝛾 → ∀𝑥𝜑)

Proof of Theorem nfrgen-P7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfrgen-P7.2 . . 3 (𝛾𝜑)
2 nfrgen-P7.1 . . . . 5 𝑥𝜑
32psubnfrv-P7 927 . . . 4 ([𝑦 / 𝑥]𝜑𝜑)
43bisym-P3.33b.RC 299 . . 3 (𝜑 ↔ [𝑦 / 𝑥]𝜑)
51, 4subimr2-P4.RC 543 . 2 (𝛾 → [𝑦 / 𝑥]𝜑)
65ndalli-P7.17.VR12of2 866 1 (𝛾 → ∀𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-forall 8  wff-imp 10  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  nfrgen-P7.RC  929  nfrgen-P7.CL  930  nfrgen-P8  1076  nfrgen-P7.VR  1077
  Copyright terms: Public domain W3C validator