PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubnfrv-P7

Theorem psubnfrv-P7 927
Description: Proper Substitution Applied To ENF Variable (variable restriction).

'𝑥' cannot occur in '𝑡'.

Hypothesis
Ref Expression
psubnfrv-P7.1 𝑥𝜑
Assertion
Ref Expression
psubnfrv-P7 ([𝑡 / 𝑥]𝜑𝜑)
Distinct variable group:   𝑡,𝑥

Proof of Theorem psubnfrv-P7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 psubnfrv-P7.1 . . . 4 𝑥𝜑
2 ndpsub3-P7.15 840 . . . 4 𝑥[𝑡 / 𝑥]𝜑
31, 2ndnfrbi-P7.6.RC 879 . . 3 𝑥(𝜑 ↔ [𝑡 / 𝑥]𝜑)
4 ndpsub2-P7.14 839 . . . 4 (𝑥 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑))
5 lemma-L7.01a 924 . . . . 5 ([𝑥 / 𝑦] 𝑦 = 𝑡𝑥 = 𝑡)
65bisym-P3.33b.RC 299 . . . 4 (𝑥 = 𝑡 ↔ [𝑥 / 𝑦] 𝑦 = 𝑡)
74, 6subiml2-P4.RC 541 . . 3 ([𝑥 / 𝑦] 𝑦 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑))
8 axL6ex-P7 925 . . 3 𝑦 𝑦 = 𝑡
93, 7, 8ndexew-P7.RC.VR1of2 888 . 2 (𝜑 ↔ [𝑡 / 𝑥]𝜑)
109bisym-P3.33b.RC 299 1 ([𝑡 / 𝑥]𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-bi 104  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  nfrgen-P7  928  nfrexgen-P7  931
  Copyright terms: Public domain W3C validator