| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > lemma-L7.01a | |||
| Description: Proper Substitution Over
Equality Lemma. †
'𝑥' cannot occur in '𝑡' or '𝑢'. |
| Ref | Expression |
|---|---|
| lemma-L7.01a | ⊢ ([𝑡 / 𝑥] 𝑥 = 𝑢 ↔ 𝑡 = 𝑢) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndsubeql-P7.22a.CL 911 | . 2 ⊢ (𝑥 = 𝑡 → (𝑥 = 𝑢 ↔ 𝑡 = 𝑢)) | |
| 2 | 1 | ndpsub1-P7.13.VR 863 | 1 ⊢ ([𝑡 / 𝑥] 𝑥 = 𝑢 ↔ 𝑡 = 𝑢) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ↔ wff-bi 104 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: axL6ex-P7 925 psubnfrv-P7 927 psubinv-P7 939 lemma-L7.02a-L1 943 lemma-L7.03 962 |
| Copyright terms: Public domain | W3C validator |