PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L7.03

Theorem lemma-L7.03 962
Description: Proper Substitution Applied To ENF Variable Lemma.

'𝑥' cannot occur in '𝑡'.

Hypotheses
Ref Expression
lemma-L7.03.1 𝑥𝛾
lemma-L7.03.2 (𝛾 → Ⅎ𝑥𝜑)
Assertion
Ref Expression
lemma-L7.03 (𝛾 → ([𝑡 / 𝑥]𝜑𝜑))
Distinct variable group:   𝑡,𝑥

Proof of Theorem lemma-L7.03
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lemma-L7.03.1 . . 3 𝑥𝛾
2 ndnfrv-P7.1 826 . . 3 𝑥 𝑦 = 𝑡
3 lemma-L7.03.2 . . . 4 (𝛾 → Ⅎ𝑥𝜑)
4 ndpsub3-P7.15 840 . . . . 5 𝑥[𝑡 / 𝑥]𝜑
54rcp-NDIMP0addall 207 . . . 4 (𝛾 → Ⅎ𝑥[𝑡 / 𝑥]𝜑)
63, 5ndnfrbi-P7.6 831 . . 3 (𝛾 → Ⅎ𝑥(𝜑 ↔ [𝑡 / 𝑥]𝜑))
7 ndpsub2-P7.14 839 . . . . 5 (𝑥 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑))
8 lemma-L7.01a 924 . . . . . 6 ([𝑥 / 𝑦] 𝑦 = 𝑡𝑥 = 𝑡)
98bisym-P3.33b.RC 299 . . . . 5 (𝑥 = 𝑡 ↔ [𝑥 / 𝑦] 𝑦 = 𝑡)
107, 9subiml2-P4.RC 541 . . . 4 ([𝑥 / 𝑦] 𝑦 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑))
1110rcp-NDIMP0addall 207 . . 3 (𝛾 → ([𝑥 / 𝑦] 𝑦 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑)))
12 axL6ex-P7 925 . . . 4 𝑦 𝑦 = 𝑡
1312rcp-NDIMP0addall 207 . . 3 (𝛾 → ∃𝑦 𝑦 = 𝑡)
141, 2, 6, 11, 13ndexe-P7.20 845 . 2 (𝛾 → (𝜑 ↔ [𝑡 / 𝑥]𝜑))
1514bisym-P3.33b 298 1 (𝛾 → ([𝑡 / 𝑥]𝜑𝜑))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  nfrgencl-P7  965
  Copyright terms: Public domain W3C validator