| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > lemma-L7.03 | |||
| Description: Proper Substitution
Applied To ENF Variable Lemma. †
'𝑥' cannot occur in '𝑡'. |
| Ref | Expression |
|---|---|
| lemma-L7.03.1 | ⊢ Ⅎ𝑥𝛾 |
| lemma-L7.03.2 | ⊢ (𝛾 → Ⅎ𝑥𝜑) |
| Ref | Expression |
|---|---|
| lemma-L7.03 | ⊢ (𝛾 → ([𝑡 / 𝑥]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemma-L7.03.1 | . . 3 ⊢ Ⅎ𝑥𝛾 | |
| 2 | ndnfrv-P7.1 826 | . . 3 ⊢ Ⅎ𝑥 𝑦 = 𝑡 | |
| 3 | lemma-L7.03.2 | . . . 4 ⊢ (𝛾 → Ⅎ𝑥𝜑) | |
| 4 | ndpsub3-P7.15 840 | . . . . 5 ⊢ Ⅎ𝑥[𝑡 / 𝑥]𝜑 | |
| 5 | 4 | rcp-NDIMP0addall 207 | . . . 4 ⊢ (𝛾 → Ⅎ𝑥[𝑡 / 𝑥]𝜑) |
| 6 | 3, 5 | ndnfrbi-P7.6 831 | . . 3 ⊢ (𝛾 → Ⅎ𝑥(𝜑 ↔ [𝑡 / 𝑥]𝜑)) |
| 7 | ndpsub2-P7.14 839 | . . . . 5 ⊢ (𝑥 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑)) | |
| 8 | lemma-L7.01a 924 | . . . . . 6 ⊢ ([𝑥 / 𝑦] 𝑦 = 𝑡 ↔ 𝑥 = 𝑡) | |
| 9 | 8 | bisym-P3.33b.RC 299 | . . . . 5 ⊢ (𝑥 = 𝑡 ↔ [𝑥 / 𝑦] 𝑦 = 𝑡) |
| 10 | 7, 9 | subiml2-P4.RC 541 | . . . 4 ⊢ ([𝑥 / 𝑦] 𝑦 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑)) |
| 11 | 10 | rcp-NDIMP0addall 207 | . . 3 ⊢ (𝛾 → ([𝑥 / 𝑦] 𝑦 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑))) |
| 12 | axL6ex-P7 925 | . . . 4 ⊢ ∃𝑦 𝑦 = 𝑡 | |
| 13 | 12 | rcp-NDIMP0addall 207 | . . 3 ⊢ (𝛾 → ∃𝑦 𝑦 = 𝑡) |
| 14 | 1, 2, 6, 11, 13 | ndexe-P7.20 845 | . 2 ⊢ (𝛾 → (𝜑 ↔ [𝑡 / 𝑥]𝜑)) |
| 15 | 14 | bisym-P3.33b 298 | 1 ⊢ (𝛾 → ([𝑡 / 𝑥]𝜑 ↔ 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 Ⅎwff-nfree 681 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: nfrgencl-P7 965 |
| Copyright terms: Public domain | W3C validator |