PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL6-P7

Theorem axL6-P7 961
Description: ax-L6 18 Derived From Natural Deduction Rules.

'𝑥' cannot occur in '𝑡'.

Assertion
Ref Expression
axL6-P7 ¬ ∀𝑥 ¬ 𝑥 = 𝑡
Distinct variable group:   𝑡,𝑥

Proof of Theorem axL6-P7
StepHypRef Expression
1 axL6ex-P7 925 . 2 𝑥 𝑥 = 𝑡
2 dfexistsint-P7 960 . 2 (∃𝑥 𝑥 = 𝑡 → ¬ ∀𝑥 ¬ 𝑥 = 𝑡)
31, 2rcp-NDIME0 228 1 ¬ ∀𝑥 ¬ 𝑥 = 𝑡
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  ¬ wff-neg 9  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator