| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > axL6-P7 | |||
| Description: ax-L6 18
Derived From Natural Deduction Rules. †
'𝑥' cannot occur in '𝑡'. |
| Ref | Expression |
|---|---|
| axL6-P7 | ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑡 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axL6ex-P7 925 | . 2 ⊢ ∃𝑥 𝑥 = 𝑡 | |
| 2 | dfexistsint-P7 960 | . 2 ⊢ (∃𝑥 𝑥 = 𝑡 → ¬ ∀𝑥 ¬ 𝑥 = 𝑡) | |
| 3 | 1, 2 | rcp-NDIME0 228 | 1 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑡 |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 ¬ wff-neg 9 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-false-D2.5 158 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |