| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > df-rcp-AND3 | |||
| Description: '∧' 3-Tuple. |
| Ref | Expression |
|---|---|
| df-rcp-AND3 | ⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃) ↔ ((𝜑₁ ∧ 𝜑₂) ∧ 𝜑₃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wff-ph1 | . . 3 wff 𝜑₁ | |
| 2 | wff-ph2 | . . 3 wff 𝜑₂ | |
| 3 | wff-ph3 | . . 3 wff 𝜑₃ | |
| 4 | 1, 2, 3 | wff-rcp-AND3 160 | . 2 wff (𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃) |
| 5 | 1, 2 | wff-and 132 | . . 3 wff (𝜑₁ ∧ 𝜑₂) |
| 6 | 5, 3 | wff-and 132 | . 2 wff ((𝜑₁ ∧ 𝜑₂) ∧ 𝜑₃) |
| 7 | 4, 6 | wff-bi 104 | 1 wff ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃) ↔ ((𝜑₁ ∧ 𝜑₂) ∧ 𝜑₃)) |
| Colors of variables: wff objvar term class |
| This definition is referenced by: rcp-NDSEP3 186 rcp-NDJOIN3 189 |
| Copyright terms: Public domain | W3C validator |