PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDJOIN3

Theorem rcp-NDJOIN3 189
Description: ( ( 1 2 ) 3 ) ( 1 2 3 ).
Hypothesis
Ref Expression
rcp-NDJOIN3.1 (((𝛾₁𝛾₂) ∧ 𝛾₃) → 𝜑)
Assertion
Ref Expression
rcp-NDJOIN3 ((𝛾₁𝛾₂𝛾₃) → 𝜑)

Proof of Theorem rcp-NDJOIN3
StepHypRef Expression
1 rcp-NDJOIN3.1 . 2 (((𝛾₁𝛾₂) ∧ 𝛾₃) → 𝜑)
2 df-rcp-AND3 161 . . . . 5 ((𝛾₁𝛾₂𝛾₃) ↔ ((𝛾₁𝛾₂) ∧ 𝛾₃))
32bisym-P2.6b.SH 125 . . . 4 (((𝛾₁𝛾₂) ∧ 𝛾₃) ↔ (𝛾₁𝛾₂𝛾₃))
43subiml-P2.8a.SH 129 . . 3 ((((𝛾₁𝛾₂) ∧ 𝛾₃) → 𝜑) ↔ ((𝛾₁𝛾₂𝛾₃) → 𝜑))
54bifwd-P2.5a.SH 112 . 2 ((((𝛾₁𝛾₂) ∧ 𝛾₃) → 𝜑) → ((𝛾₁𝛾₂𝛾₃) → 𝜑))
61, 5ax-MP 14 1 ((𝛾₁𝛾₂𝛾₃) → 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-rcp-AND3 161
This theorem is referenced by:  rcp-NDASM1of3  195  rcp-NDASM2of3  196  rcp-NDASM3of3  197  rcp-NDIMP2add1  209  rcp-IMPIME2  528
  Copyright terms: Public domain W3C validator