| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDJOIN3 | |||
| Description: ( ( 1 ∧ 2 ) ∧ 3 ) ⇒ ( 1 ∧ 2 ∧ 3 ). |
| Ref | Expression |
|---|---|
| rcp-NDJOIN3.1 | ⊢ (((𝛾₁ ∧ 𝛾₂) ∧ 𝛾₃) → 𝜑) |
| Ref | Expression |
|---|---|
| rcp-NDJOIN3 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDJOIN3.1 | . 2 ⊢ (((𝛾₁ ∧ 𝛾₂) ∧ 𝛾₃) → 𝜑) | |
| 2 | df-rcp-AND3 161 | . . . . 5 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) ↔ ((𝛾₁ ∧ 𝛾₂) ∧ 𝛾₃)) | |
| 3 | 2 | bisym-P2.6b.SH 125 | . . . 4 ⊢ (((𝛾₁ ∧ 𝛾₂) ∧ 𝛾₃) ↔ (𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃)) |
| 4 | 3 | subiml-P2.8a.SH 129 | . . 3 ⊢ ((((𝛾₁ ∧ 𝛾₂) ∧ 𝛾₃) → 𝜑) ↔ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝜑)) |
| 5 | 4 | bifwd-P2.5a.SH 112 | . 2 ⊢ ((((𝛾₁ ∧ 𝛾₂) ∧ 𝛾₃) → 𝜑) → ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝜑)) |
| 6 | 1, 5 | ax-MP 14 | 1 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 ∧ wff-rcp-AND3 160 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-rcp-AND3 161 |
| This theorem is referenced by: rcp-NDASM1of3 195 rcp-NDASM2of3 196 rcp-NDASM3of3 197 rcp-NDIMP2add1 209 rcp-IMPIME2 528 |
| Copyright terms: Public domain | W3C validator |