PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bifwd-P2.5a.SH

Theorem bifwd-P2.5a.SH 112
Description: Inference from bifwd-P2.5a 111.
Hypothesis
Ref Expression
bifwd-P2.5a.SH.1 (𝜑𝜓)
Assertion
Ref Expression
bifwd-P2.5a.SH (𝜑𝜓)

Proof of Theorem bifwd-P2.5a.SH
StepHypRef Expression
1 bifwd-P2.5a.SH.1 . 2 (𝜑𝜓)
2 bifwd-P2.5a 111 . 2 ((𝜑𝜓) → (𝜑𝜓))
31, 2ax-MP 14 1 (𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  simpl-P2.9a  134  simpr-P2.9b  136  orelim-P2.11c  150  false-P2.15  159  rcp-NDSEP3  186  rcp-NDSEP4  187  rcp-NDSEP5  188  rcp-NDJOIN3  189  rcp-NDJOIN4  190  rcp-NDJOIN5  191
  Copyright terms: Public domain W3C validator