PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bifwd-P2.5a.AC.SH

Theorem bifwd-P2.5a.AC.SH 113
Description: Deductive Form of bifwd-P2.5a 111
Hypothesis
Ref Expression
bifwd-P2.5a.AC.SH.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
bifwd-P2.5a.AC.SH (𝛾 → (𝜑𝜓))

Proof of Theorem bifwd-P2.5a.AC.SH
StepHypRef Expression
1 bifwd-P2.5a.AC.SH.1 . 2 (𝛾 → (𝜑𝜓))
2 bifwd-P2.5a 111 . . . 4 ((𝜑𝜓) → (𝜑𝜓))
32axL1.SH 30 . . 3 (𝛾 → ((𝜑𝜓) → (𝜑𝜓)))
43rcp-FR1.SH 40 . 2 ((𝛾 → (𝜑𝜓)) → (𝛾 → (𝜑𝜓)))
51, 4ax-MP 14 1 (𝛾 → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  ndbief-P3.14  179
  Copyright terms: Public domain W3C validator