PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bifwd-P2.5a.2AC.SH

Theorem bifwd-P2.5a.2AC.SH 114
Description: Another Deductive form of bifwd-P2.5a 111.
Hypothesis
Ref Expression
bifwd-P2.5a.2AC.SH.1 (𝛾₁ → (𝛾₂ → (𝜑𝜓)))
Assertion
Ref Expression
bifwd-P2.5a.2AC.SH (𝛾₁ → (𝛾₂ → (𝜑𝜓)))

Proof of Theorem bifwd-P2.5a.2AC.SH
StepHypRef Expression
1 bifwd-P2.5a.2AC.SH.1 . 2 (𝛾₁ → (𝛾₂ → (𝜑𝜓)))
2 bifwd-P2.5a 111 . . . . 5 ((𝜑𝜓) → (𝜑𝜓))
32axL1.SH 30 . . . 4 (𝛾₂ → ((𝜑𝜓) → (𝜑𝜓)))
43axL1.SH 30 . . 3 (𝛾₁ → (𝛾₂ → ((𝜑𝜓) → (𝜑𝜓))))
54rcp-FR2.SH 42 . 2 ((𝛾₁ → (𝛾₂ → (𝜑𝜓))) → (𝛾₁ → (𝛾₂ → (𝜑𝜓))))
61, 5ax-MP 14 1 (𝛾₁ → (𝛾₂ → (𝜑𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  bitrns-P2.6c  126
  Copyright terms: Public domain W3C validator