PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bitrns-P2.6c

Theorem bitrns-P2.6c 126
Description: Equivalence Property: '' Transitivity.
Assertion
Ref Expression
bitrns-P2.6c ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem bitrns-P2.6c
StepHypRef Expression
1 ax-L1 11 . . . 4 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜓)))
21bifwd-P2.5a.2AC.SH 114 . . 3 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜓)))
3 id-P1.4 36 . . . . 5 ((𝜓𝜒) → (𝜓𝜒))
43axL1.SH 30 . . . 4 ((𝜑𝜓) → ((𝜓𝜒) → (𝜓𝜒)))
54bifwd-P2.5a.2AC.SH 114 . . 3 ((𝜑𝜓) → ((𝜓𝜒) → (𝜓𝜒)))
62, 5sylt-P1.9.2AC.2SH 63 . 2 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
74birev-P2.5b.2AC.SH 118 . . 3 ((𝜑𝜓) → ((𝜓𝜒) → (𝜒𝜓)))
81birev-P2.5b.2AC.SH 118 . . 3 ((𝜑𝜓) → ((𝜓𝜒) → (𝜓𝜑)))
97, 8sylt-P1.9.2AC.2SH 63 . 2 ((𝜑𝜓) → ((𝜓𝜒) → (𝜒𝜑)))
106, 9bicmb-P2.5c.2AC.2SH 122 1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator