| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > bitrns-P2.6c | |||
| Description: Equivalence Property: '↔' Transitivity. |
| Ref | Expression |
|---|---|
| bitrns-P2.6c | ⊢ ((𝜑 ↔ 𝜓) → ((𝜓 ↔ 𝜒) → (𝜑 ↔ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-L1 11 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → ((𝜓 ↔ 𝜒) → (𝜑 ↔ 𝜓))) | |
| 2 | 1 | bifwd-P2.5a.2AC.SH 114 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → ((𝜓 ↔ 𝜒) → (𝜑 → 𝜓))) |
| 3 | id-P1.4 36 | . . . . 5 ⊢ ((𝜓 ↔ 𝜒) → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | axL1.SH 30 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → ((𝜓 ↔ 𝜒) → (𝜓 ↔ 𝜒))) |
| 5 | 4 | bifwd-P2.5a.2AC.SH 114 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒))) |
| 6 | 2, 5 | sylt-P1.9.2AC.2SH 63 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜓 ↔ 𝜒) → (𝜑 → 𝜒))) |
| 7 | 4 | birev-P2.5b.2AC.SH 118 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → ((𝜓 ↔ 𝜒) → (𝜒 → 𝜓))) |
| 8 | 1 | birev-P2.5b.2AC.SH 118 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → ((𝜓 ↔ 𝜒) → (𝜓 → 𝜑))) |
| 9 | 7, 8 | sylt-P1.9.2AC.2SH 63 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜓 ↔ 𝜒) → (𝜒 → 𝜑))) |
| 10 | 6, 9 | bicmb-P2.5c.2AC.2SH 122 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜓 ↔ 𝜒) → (𝜑 ↔ 𝜒))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |