Proof of Theorem sylt-P1.9.2AC.2SH
| Step | Hyp | Ref
| Expression |
| 1 | | sylt-P1.9.2AC.2SH.2 |
. 2
⊢ (𝛾₁ → (𝛾₂ → (𝜓
→ 𝜒))) |
| 2 | | sylt-P1.9.2AC.2SH.1 |
. . . 4
⊢ (𝛾₁ → (𝛾₂ → (𝜑
→ 𝜓))) |
| 3 | | sylt-P1.9 61 |
. . . . . . 7
⊢ ((𝜑 → 𝜓) →
((𝜓 → 𝜒)
→ (𝜑 → 𝜒))) |
| 4 | 3 | axL1.SH 30 |
. . . . . 6
⊢ (𝛾₂ → ((𝜑
→ 𝜓) → ((𝜓 → 𝜒) →
(𝜑 → 𝜒)))) |
| 5 | 4 | axL1.SH 30 |
. . . . 5
⊢ (𝛾₁ → (𝛾₂ → ((𝜑
→ 𝜓) → ((𝜓 → 𝜒) →
(𝜑 → 𝜒))))) |
| 6 | 5 | rcp-FR2.SH 42 |
. . . 4
⊢ ((𝛾₁ → (𝛾₂ → (𝜑
→ 𝜓))) → (𝛾₁ → (𝛾₂ → ((𝜓
→ 𝜒) → (𝜑 → 𝜒))))) |
| 7 | 2, 6 | ax-MP 14 |
. . 3
⊢ (𝛾₁ → (𝛾₂ → ((𝜓
→ 𝜒) → (𝜑 → 𝜒)))) |
| 8 | 7 | rcp-FR2.SH 42 |
. 2
⊢ ((𝛾₁ → (𝛾₂ → (𝜓
→ 𝜒))) → (𝛾₁ → (𝛾₂ → (𝜑
→ 𝜒)))) |
| 9 | 1, 8 | ax-MP 14 |
1
⊢ (𝛾₁ → (𝛾₂ → (𝜑
→ 𝜒))) |