PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  sylt-P1.9.2AC.2SH

Theorem sylt-P1.9.2AC.2SH 63
Description: Another Deductive Form of sylt-P1.9 61.
Hypotheses
Ref Expression
sylt-P1.9.2AC.2SH.1 (𝛾₁ → (𝛾₂ → (𝜑𝜓)))
sylt-P1.9.2AC.2SH.2 (𝛾₁ → (𝛾₂ → (𝜓𝜒)))
Assertion
Ref Expression
sylt-P1.9.2AC.2SH (𝛾₁ → (𝛾₂ → (𝜑𝜒)))

Proof of Theorem sylt-P1.9.2AC.2SH
StepHypRef Expression
1 sylt-P1.9.2AC.2SH.2 . 2 (𝛾₁ → (𝛾₂ → (𝜓𝜒)))
2 sylt-P1.9.2AC.2SH.1 . . . 4 (𝛾₁ → (𝛾₂ → (𝜑𝜓)))
3 sylt-P1.9 61 . . . . . . 7 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
43axL1.SH 30 . . . . . 6 (𝛾₂ → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒))))
54axL1.SH 30 . . . . 5 (𝛾₁ → (𝛾₂ → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))))
65rcp-FR2.SH 42 . . . 4 ((𝛾₁ → (𝛾₂ → (𝜑𝜓))) → (𝛾₁ → (𝛾₂ → ((𝜓𝜒) → (𝜑𝜒)))))
72, 6ax-MP 14 . . 3 (𝛾₁ → (𝛾₂ → ((𝜓𝜒) → (𝜑𝜒))))
87rcp-FR2.SH 42 . 2 ((𝛾₁ → (𝛾₂ → (𝜓𝜒))) → (𝛾₁ → (𝛾₂ → (𝜑𝜒))))
91, 8ax-MP 14 1 (𝛾₁ → (𝛾₂ → (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  pfbycont-P1.16  86  pfbycase-P1.17  88  bitrns-P2.6c  126
  Copyright terms: Public domain W3C validator