PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  sylt-P1.9

Theorem sylt-P1.9 61
Description: Closed Form of Syllogism.
Assertion
Ref Expression
sylt-P1.9 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem sylt-P1.9
StepHypRef Expression
1 imsubl-P1.7b 54 1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  sylt-P1.9.AC.2SH  62  sylt-P1.9.2AC.2SH  63
  Copyright terms: Public domain W3C validator