PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imsubl-P1.7b

Theorem imsubl-P1.7b 54
Description: Implication Substitution (left).

The other related rule is imsubr-P1.7a 51.

Assertion
Ref Expression
imsubl-P1.7b ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem imsubl-P1.7b
StepHypRef Expression
1 imsubr-P1.7a 51 . 2 ((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒)))
21imcomm-P1.6.SH 49 1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  imsubl-P1.7b.SH  55  imsubl-P1.7b.AC.SH  56  sylt-P1.9  61
  Copyright terms: Public domain W3C validator