PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  imsubl-P1.7b.SH

Theorem imsubl-P1.7b.SH 55
Description: Inference from imsubl-P1.7b 54.
Hypothesis
Ref Expression
imsubl-P1.7b.SH.1 (𝜑𝜓)
Assertion
Ref Expression
imsubl-P1.7b.SH ((𝜓𝜒) → (𝜑𝜒))

Proof of Theorem imsubl-P1.7b.SH
StepHypRef Expression
1 imsubl-P1.7b.SH.1 . 2 (𝜑𝜓)
2 imsubl-P1.7b 54 . 2 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
31, 2ax-MP 14 1 ((𝜓𝜒) → (𝜑𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  nclav-P1.14  73  trnsp-P1.15a  76
  Copyright terms: Public domain W3C validator