PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  trnsp-P1.15a

Theorem trnsp-P1.15a 76
Description: Transposition Variant A.
Assertion
Ref Expression
trnsp-P1.15a ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))

Proof of Theorem trnsp-P1.15a
StepHypRef Expression
1 dneg-P1.13a 71 . . 3 (¬ ¬ 𝜑𝜑)
21imsubl-P1.7b.SH 55 . 2 ((𝜑 → ¬ 𝜓) → (¬ ¬ 𝜑 → ¬ 𝜓))
3 ax-L3 13 . 2 ((¬ ¬ 𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
42, 3syl-P1.2 34 1 ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  trnsp-P1.15a.SH  77  trnsp-P1.15c  80  pfbycont-P1.16  86
  Copyright terms: Public domain W3C validator