PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nclav-P1.14.2AC.SH

Theorem nclav-P1.14.2AC.SH 75
Description: Another Deductive Form of nclav-P1.14 73.
Hypothesis
Ref Expression
nclav-P1.14.2AC.SH.1 (𝛾₁ → (𝛾₂ → (𝜑 → ¬ 𝜑)))
Assertion
Ref Expression
nclav-P1.14.2AC.SH (𝛾₁ → (𝛾₂ → ¬ 𝜑))

Proof of Theorem nclav-P1.14.2AC.SH
StepHypRef Expression
1 nclav-P1.14.2AC.SH.1 . 2 (𝛾₁ → (𝛾₂ → (𝜑 → ¬ 𝜑)))
2 nclav-P1.14 73 . . . . 5 ((𝜑 → ¬ 𝜑) → ¬ 𝜑)
32axL1.SH 30 . . . 4 (𝛾₂ → ((𝜑 → ¬ 𝜑) → ¬ 𝜑))
43axL1.SH 30 . . 3 (𝛾₁ → (𝛾₂ → ((𝜑 → ¬ 𝜑) → ¬ 𝜑)))
54rcp-FR2.SH 42 . 2 ((𝛾₁ → (𝛾₂ → (𝜑 → ¬ 𝜑))) → (𝛾₁ → (𝛾₂ → ¬ 𝜑)))
61, 5ax-MP 14 1 (𝛾₁ → (𝛾₂ → ¬ 𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  pfbycont-P1.16  86
  Copyright terms: Public domain W3C validator