PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  clav-P1.14.AC.SH

Theorem clav-P1.14.AC.SH 74
Description: Deductive Form of nclav-P1.14 73.
Hypothesis
Ref Expression
nclav-P1.14.AC.SH.1 (𝛾 → (𝜑 → ¬ 𝜑))
Assertion
Ref Expression
clav-P1.14.AC.SH (𝛾 → ¬ 𝜑)

Proof of Theorem clav-P1.14.AC.SH
StepHypRef Expression
1 nclav-P1.14.AC.SH.1 . 2 (𝛾 → (𝜑 → ¬ 𝜑))
2 nclav-P1.14 73 . . . 4 ((𝜑 → ¬ 𝜑) → ¬ 𝜑)
32axL1.SH 30 . . 3 (𝛾 → ((𝜑 → ¬ 𝜑) → ¬ 𝜑))
43rcp-FR1.SH 40 . 2 ((𝛾 → (𝜑 → ¬ 𝜑)) → (𝛾 → ¬ 𝜑))
51, 4ax-MP 14 1 (𝛾 → ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator