| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-FR1.SH | |||
| Description: Inference from rcp-FR1 39. |
| Ref | Expression |
|---|---|
| rcp-FR1.SH.1 | ⊢ (𝛾₁ → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rcp-FR1.SH | ⊢ ((𝛾₁ → 𝜑) → (𝛾₁ → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-FR1.SH.1 | . 2 ⊢ (𝛾₁ → (𝜑 → 𝜓)) | |
| 2 | rcp-FR1 39 | . 2 ⊢ ((𝛾₁ → (𝜑 → 𝜓)) → ((𝛾₁ → 𝜑) → (𝛾₁ → 𝜓))) | |
| 3 | 1, 2 | ax-MP 14 | 1 ⊢ ((𝛾₁ → 𝜑) → (𝛾₁ → 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 |
| This theorem was proved from axioms: ax-L2 12 ax-MP 14 |
| This theorem is referenced by: axL1.AC.SH 45 axL2.AC.SH 46 axL3.AC.SH 47 imcomm-P1.6.AC.SH 50 imsubr-P1.7a.AC.SH 53 imsubl-P1.7b.AC.SH 56 mpt-P1.8.AC.2SH 58 sylt-P1.9.AC.2SH 62 poe-P1.11b.AC.2SH 67 clav-P1.12.AC.SH 69 clav-P1.14.AC.SH 74 trnsp-P1.15b.AC.SH 79 trnsp-P1.15c.AC.SH 82 trnsp-P1.15d.AC.SH 84 pfbycont-P1.16.AC.2SH 87 pfbycase-P1.17.AC.2SH 90 bifwd-P2.5a.AC.SH 113 birev-P2.5b.AC.SH 117 bicmb-P2.5c.AC.2SH 121 simpl-P2.9a.AC.SH 135 simpr-P2.9b.AC.SH 137 cmb-P2.9c.AC.2SH 139 orintl-P2.11a.AC.SH 147 orintr-P2.11b.AC.SH 149 orelim-P2.11c.AC.3SH 151 |
| Copyright terms: Public domain | W3C validator |