PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-FR1.SH

Theorem rcp-FR1.SH 40
Description: Inference from rcp-FR1 39.
Hypothesis
Ref Expression
rcp-FR1.SH.1 (𝛾₁ → (𝜑𝜓))
Assertion
Ref Expression
rcp-FR1.SH ((𝛾₁𝜑) → (𝛾₁𝜓))

Proof of Theorem rcp-FR1.SH
StepHypRef Expression
1 rcp-FR1.SH.1 . 2 (𝛾₁ → (𝜑𝜓))
2 rcp-FR1 39 . 2 ((𝛾₁ → (𝜑𝜓)) → ((𝛾₁𝜑) → (𝛾₁𝜓)))
31, 2ax-MP 14 1 ((𝛾₁𝜑) → (𝛾₁𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L2 12  ax-MP 14
This theorem is referenced by:  axL1.AC.SH  45  axL2.AC.SH  46  axL3.AC.SH  47  imcomm-P1.6.AC.SH  50  imsubr-P1.7a.AC.SH  53  imsubl-P1.7b.AC.SH  56  mpt-P1.8.AC.2SH  58  sylt-P1.9.AC.2SH  62  poe-P1.11b.AC.2SH  67  clav-P1.12.AC.SH  69  clav-P1.14.AC.SH  74  trnsp-P1.15b.AC.SH  79  trnsp-P1.15c.AC.SH  82  trnsp-P1.15d.AC.SH  84  pfbycont-P1.16.AC.2SH  87  pfbycase-P1.17.AC.2SH  90  bifwd-P2.5a.AC.SH  113  birev-P2.5b.AC.SH  117  bicmb-P2.5c.AC.2SH  121  simpl-P2.9a.AC.SH  135  simpr-P2.9b.AC.SH  137  cmb-P2.9c.AC.2SH  139  orintl-P2.11a.AC.SH  147  orintr-P2.11b.AC.SH  149  orelim-P2.11c.AC.3SH  151
  Copyright terms: Public domain W3C validator