PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  simpl-P2.9a.AC.SH

Theorem simpl-P2.9a.AC.SH 135
Description: Deductive Form of simpl-P2.9a 134.
Hypothesis
Ref Expression
simpl-P2.9a.AC.SH.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
simpl-P2.9a.AC.SH (𝛾𝜑)

Proof of Theorem simpl-P2.9a.AC.SH
StepHypRef Expression
1 simpl-P2.9a.AC.SH.1 . 2 (𝛾 → (𝜑𝜓))
2 simpl-P2.9a 134 . . . 4 ((𝜑𝜓) → 𝜑)
32axL1.SH 30 . . 3 (𝛾 → ((𝜑𝜓) → 𝜑))
43rcp-FR1.SH 40 . 2 ((𝛾 → (𝜑𝜓)) → (𝛾𝜑))
51, 4ax-MP 14 1 (𝛾𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  orelim-P2.11c  150  ndander-P3.9  174
  Copyright terms: Public domain W3C validator