PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndander-P3.9

Theorem ndander-P3.9 174
Description: Natural Deduction: Right '' Elimination Rule.

Deduce the left conjunct (i.e. eliminate the right conjunct) of a previously deduced conjunction.

Hypothesis
Ref Expression
ndander-P3.9.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
ndander-P3.9 (𝛾𝜑)

Proof of Theorem ndander-P3.9
StepHypRef Expression
1 ndander-P3.9.1 . 2 (𝛾 → (𝜑𝜓))
21simpl-P2.9a.AC.SH 135 1 (𝛾𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  rcp-NDANDER0  231  import-P3.34a  305  andcomm-P3.35-L1  313  andassoc-P3.36-L1  315  andassoc-P3.36-L2  316  subandl-P3.42a-L1  338  andasim-P3.46-L1  354  nandir-P4.3b  375  joinimandinc-P4.8a  397  joinimandres-P4.8b  400  joinimor-P4.8c  403  sepimandr-P4.9a  406  dmorgarev-L4.2  453  andoveror-P4.27-L2  460  oroverand-P4.27-L3  462  oroverbiint-P4.28d  471  imasandint-P4.33b  490  biasandorint-P4.34b  492
  Copyright terms: Public domain W3C validator