PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  oroverbiint-P4.28d

Theorem oroverbiint-P4.28d 471
Description: One Direction of '' Distributes Over ''.

Only this version is deducible with intuitionist logic.

Assertion
Ref Expression
oroverbiint-P4.28d ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) ↔ (𝜑𝜒)))

Proof of Theorem oroverbiint-P4.28d
StepHypRef Expression
1 oroverbi-P4.28-L3 468 . . . . 5 ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑 ∨ (𝜓𝜒)) ∧ (𝜑 ∨ (𝜒𝜓))))
21rcp-NDBIEF0 240 . . . 4 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑 ∨ (𝜓𝜒)) ∧ (𝜑 ∨ (𝜒𝜓))))
32ndander-P3.9 174 . . 3 ((𝜑 ∨ (𝜓𝜒)) → (𝜑 ∨ (𝜓𝜒)))
4 oroverim-P4.28-L1 465 . . 3 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
53, 4syl-P3.24.RC 260 . 2 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
62ndandel-P3.8 173 . . 3 ((𝜑 ∨ (𝜓𝜒)) → (𝜑 ∨ (𝜒𝜓)))
7 oroverim-P4.28-L1 465 . . 3 ((𝜑 ∨ (𝜒𝜓)) → ((𝜑𝜒) → (𝜑𝜓)))
86, 7syl-P3.24.RC 260 . 2 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜒) → (𝜑𝜓)))
95, 8ndbii-P3.13 178 1 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) ↔ (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-rcp-AND4 163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator