Proof of Theorem oroverbiint-P4.28d
| Step | Hyp | Ref
| Expression |
| 1 | | oroverbi-P4.28-L3 468 |
. . . . 5
⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨
(𝜓 → 𝜒))
∧ (𝜑 ∨ (𝜒 → 𝜓)))) |
| 2 | 1 | rcp-NDBIEF0 240 |
. . . 4
⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) → ((𝜑 ∨
(𝜓 → 𝜒))
∧ (𝜑 ∨ (𝜒 → 𝜓)))) |
| 3 | 2 | ndander-P3.9 174 |
. . 3
⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) → (𝜑 ∨
(𝜓 → 𝜒))) |
| 4 | | oroverim-P4.28-L1 465 |
. . 3
⊢ ((𝜑 ∨ (𝜓 → 𝜒)) → ((𝜑 ∨
𝜓) → (𝜑
∨ 𝜒))) |
| 5 | 3, 4 | syl-P3.24.RC 260 |
. 2
⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) → ((𝜑 ∨
𝜓) → (𝜑
∨ 𝜒))) |
| 6 | 2 | ndandel-P3.8 173 |
. . 3
⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) → (𝜑 ∨
(𝜒 → 𝜓))) |
| 7 | | oroverim-P4.28-L1 465 |
. . 3
⊢ ((𝜑 ∨ (𝜒 → 𝜓)) → ((𝜑 ∨
𝜒) → (𝜑
∨ 𝜓))) |
| 8 | 6, 7 | syl-P3.24.RC 260 |
. 2
⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) → ((𝜑 ∨
𝜒) → (𝜑
∨ 𝜓))) |
| 9 | 5, 8 | ndbii-P3.13 178 |
1
⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) → ((𝜑 ∨
𝜓) ↔ (𝜑
∨ 𝜒))) |