| bfol.mm
Proof Explorer Theorem List (p. 5 of 12) |
< Previous Next >
|
|
Mirrors > Metamath Home Page > PE Home Page > Theorem List Contents This page: Page List | |||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | joinimandres-P4.8b.RC 401 | Inference Form of joinimandres-P4.8b 400. † |
| ⊢ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜗)) ⇒ ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜗)) | ||
| Theorem | joinimandres-P4.8b.CL 402 | Closed Form of joinimandres-P4.8b 400. † |
| ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜗)) → ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜗))) | ||
| Theorem | joinimor-P4.8c 403 | Join Two Implications Through Disjunction. † |
| ⊢ (𝛾 → ((𝜑 → 𝜓) ∨ (𝜒 → 𝜗))) ⇒ ⊢ (𝛾 → ((𝜑 ∧ 𝜒) → (𝜓 ∨ 𝜗))) | ||
| Theorem | joinimor-P4.8c.RC 404 | Inference Form of joinimor-P4.8c 403. † |
| ⊢ ((𝜑 → 𝜓) ∨ (𝜒 → 𝜗)) ⇒ ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∨ 𝜗)) | ||
| Theorem | joinimor-P4.8c.CL 405 | Closed Form of joinimor-P4.8c 403. † |
| ⊢ (((𝜑 → 𝜓) ∨ (𝜒 → 𝜗)) → ((𝜑 ∧ 𝜒) → (𝜓 ∨ 𝜗))) | ||
| Theorem | sepimandr-P4.9a 406 | Separate Right Conjunction from Implication. † |
| ⊢ (𝛾 → (𝜑 → (𝜓 ∧ 𝜒))) ⇒ ⊢ (𝛾 → ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) | ||
| Theorem | sepimandr-P4.9a.RC 407 | Inference Form of sepimandr-P4.9a 406. † |
| ⊢ (𝜑 → (𝜓 ∧ 𝜒)) ⇒ ⊢ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) | ||
| Theorem | sepimandr-P4.9a.CL 408 | Closed Form of sepimandr-P4.9a 406. † |
| ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) | ||
| Theorem | sepimorl-P4.9b 409 | Separate Left Disjunction from Implication. † |
| ⊢ (𝛾 → ((𝜑 ∨ 𝜓) → 𝜒)) ⇒ ⊢ (𝛾 → ((𝜑 → 𝜒) ∧ (𝜓 → 𝜒))) | ||
| Theorem | sepimorl-P4.9b.RC 410 | Inference Form of sepimorl-P4.9b 409. † |
| ⊢ ((𝜑 ∨ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 → 𝜒) ∧ (𝜓 → 𝜒)) | ||
| Theorem | sepimorl-P4.9b.CL 411 | Closed Form of sepimorl-P4.9b 409. † |
| ⊢ (((𝜑 ∨ 𝜓) → 𝜒) → ((𝜑 → 𝜒) ∧ (𝜓 → 𝜒))) | ||
| Theorem | sepimorr-P4.9c 412 | Separate Right Disjunction from Implication. |
| ⊢ (𝛾 → (𝜑 → (𝜓 ∨ 𝜒))) ⇒ ⊢ (𝛾 → ((𝜑 → 𝜓) ∨ (𝜑 → 𝜒))) | ||
| Theorem | sepimorr-P4.9c.RC 413 | Inference Form of sepimorr-P4.9c 412. |
| ⊢ (𝜑 → (𝜓 ∨ 𝜒)) ⇒ ⊢ ((𝜑 → 𝜓) ∨ (𝜑 → 𝜒)) | ||
| Theorem | sepimorr-P4.9c.CL 414 | Closed Form of sepimorr-P4.9c 412. |
| ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) → ((𝜑 → 𝜓) ∨ (𝜑 → 𝜒))) | ||
| Theorem | sepimandl-P4.9d 415 | Separate Left Conjunction from Implication. |
| ⊢ (𝛾 → ((𝜑 ∧ 𝜓) → 𝜒)) ⇒ ⊢ (𝛾 → ((𝜑 → 𝜒) ∨ (𝜓 → 𝜒))) | ||
| Theorem | sepimandl-P4.9d.RC 416 | Inference Form of sepimandl-P4.9d 415. |
| ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 → 𝜒) ∨ (𝜓 → 𝜒)) | ||
| Theorem | sepimandl-P4.9d.CL 417 | Closed Form of sepimandl-P4.9d 415. |
| ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → ((𝜑 → 𝜒) ∨ (𝜓 → 𝜒))) | ||
| Theorem | dnegeq-P4.10 418 | Double Negation Equivalence Property. |
| ⊢ (¬ ¬ 𝜑 ↔ 𝜑) | ||
| Theorem | negbicancel-P4.11 419 | Negation Cancellation Rule. |
| ⊢ (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓)) ⇒ ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | ||
| Theorem | negbicancel-P4.11.RC 420 | Inference Form of negbicancel-P4.11 419. |
| ⊢ (¬ 𝜑 ↔ ¬ 𝜓) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
| Theorem | dnegeint-P4.12 421 | Version of Double Negative Elimination deducible with intuitionist logic. † |
| ⊢ (𝛾 → ¬ ¬ ¬ 𝜑) ⇒ ⊢ (𝛾 → ¬ 𝜑) | ||
| Theorem | dnegeint-P4.12.RC 422 | Inference Form of dnegeint-P4.12 421. † |
| ⊢ ¬ ¬ ¬ 𝜑 ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | dnegeqint-P4.13 423 | Double Negative Equivalence Property deducible with intuitionist logic. † |
| ⊢ (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑) | ||
| Theorem | negbicancelint-P4.14 424 | Negation Cancellation Rule derivalbe with intuitionist logic. † |
| ⊢ (𝛾 → (¬ ¬ 𝜑 ↔ ¬ ¬ 𝜓)) ⇒ ⊢ (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓)) | ||
| Theorem | negbicancelint-P4.14.RC 425 | Inference Form of negbicancelint-P4.14 424. † |
| ⊢ (¬ ¬ 𝜑 ↔ ¬ ¬ 𝜓) ⇒ ⊢ (¬ 𝜑 ↔ ¬ 𝜓) | ||
| Theorem | tsyl-P4.15 426 | Triple Syllogism. † |
| ⊢ (𝛾 → (𝜑 → 𝜓)) & ⊢ (𝛾 → (𝜓 → 𝜒)) & ⊢ (𝛾 → (𝜒 → 𝜗)) & ⊢ (𝛾 → (𝜗 → 𝜏)) ⇒ ⊢ (𝛾 → (𝜑 → 𝜏)) | ||
| Theorem | tsyl-P4.15.RC 427 | Inference form of tsyl-P4.15 426. † |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → 𝜒) & ⊢ (𝜒 → 𝜗) & ⊢ (𝜗 → 𝜏) ⇒ ⊢ (𝜑 → 𝜏) | ||
| Theorem | dbitrns-P4.16 428 | Doubled Transitive Rule for Biconditional. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) & ⊢ (𝛾 → (𝜓 ↔ 𝜒)) & ⊢ (𝛾 → (𝜒 ↔ 𝜗)) ⇒ ⊢ (𝛾 → (𝜑 ↔ 𝜗)) | ||
| Theorem | dbitrns-P4.16.RC 429 | Inference Form of dbitrns-P4.16 428. † |
| ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜓 ↔ 𝜒) & ⊢ (𝜒 ↔ 𝜗) ⇒ ⊢ (𝜑 ↔ 𝜗) | ||
| Theorem | tbitrns-P4.17 430 | Triple Transitive Rule for Biconditional. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) & ⊢ (𝛾 → (𝜓 ↔ 𝜒)) & ⊢ (𝛾 → (𝜒 ↔ 𝜗)) & ⊢ (𝛾 → (𝜗 ↔ 𝜏)) ⇒ ⊢ (𝛾 → (𝜑 ↔ 𝜏)) | ||
| Theorem | tbitrns-P4.17.RC 431 | Inference Form of tbitrns-P4.17 430. † |
| ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜓 ↔ 𝜒) & ⊢ (𝜒 ↔ 𝜗) & ⊢ (𝜗 ↔ 𝜏) ⇒ ⊢ (𝜑 ↔ 𝜏) | ||
The following scheme is useful for shortening proofs where one must derive an absurdity from each statement within a disjunction in order to show that the entire disjunction is absurd. | ||
| Theorem | falsenegi-P4.18 432 | Derived Natural Deduction Rule Using '⊥'. † |
| ⊢ ((𝛾 ∧ 𝜑) → ⊥) ⇒ ⊢ (𝛾 → ¬ 𝜑) | ||
These derived rules may be used in place of falsenegi-P4.18 432. | ||
| Theorem | rcp-FALSENEGI1 433 | '¬' Introduction with '⊥'. † |
| ⊢ (𝛾₁ → ⊥) ⇒ ⊢ ¬ 𝛾₁ | ||
| Theorem | rcp-FALSENEGI2 434 | '¬' Introduction with '⊥'. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂) → ⊥) ⇒ ⊢ (𝛾₁ → ¬ 𝛾₂) | ||
| Theorem | rcp-FALSENEGI3 435 | '¬' Introduction with '⊥'. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → ⊥) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂) → ¬ 𝛾₃) | ||
| Theorem | rcp-FALSENEGI4 436 | '¬' Introduction with '⊥'. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → ⊥) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → ¬ 𝛾₄) | ||
| Theorem | rcp-FALSENEGI5 437 | '¬' Introduction with '⊥'. † |
| ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄ ∧ 𝛾₅) → ⊥) ⇒ ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → ¬ 𝛾₅) | ||
| Theorem | idandtruel-P4.19a 438 | '∧' Identity is '⊤' (left). † |
| ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) | ||
| Theorem | idandtruer-P4.19b 439 | '∧' Identity is '⊤' (right). † |
| ⊢ ((𝜑 ∧ ⊤) ↔ 𝜑) | ||
| Theorem | idorfalsel-P4.20a 440 | '∨' Identity is '⊥' (left). † |
| ⊢ ((⊥ ∨ 𝜑) ↔ 𝜑) | ||
| Theorem | idorfalser-P4.20b 441 | '∨' Identity is '⊥' (right). † |
| ⊢ ((𝜑 ∨ ⊥) ↔ 𝜑) | ||
| Theorem | thmeqtrue-P4.21a 442 | Any Theorem is Logically Equivalent to '⊤'. † |
| ⊢ 𝜑 ⇒ ⊢ (𝜑 ↔ ⊤) | ||
| Theorem | nthmeqfalse-P4.21b 443 | Any Refuted Statement is Logically Equivalent to '⊥'. † |
| ⊢ ¬ 𝜑 ⇒ ⊢ (𝜑 ↔ ⊥) | ||
| Theorem | trueie-P4.22a 444 | '⊤' Introduction and Elimination (closed form). † |
| ⊢ ((⊤ → 𝜑) ↔ 𝜑) | ||
| Theorem | falseie-P4.22b 445 | '⊥' Introduction and Elimination (closed form). † |
| ⊢ ((𝜑 → ⊥) ↔ ¬ 𝜑) | ||
| Theorem | idandthml-P4.23a 446 | '∧' Identity is Any Theorem (left). † |
| ⊢ 𝜑 ⇒ ⊢ ((𝜑 ∧ 𝜓) ↔ 𝜓) | ||
| Theorem | idandthmr-P4.23b 447 | '∧' Identity is Any Theorem (right). † |
| ⊢ 𝜑 ⇒ ⊢ ((𝜓 ∧ 𝜑) ↔ 𝜓) | ||
| Theorem | idornthml-P4.24a 448 | '∨' Identity is Any Refuted Statement (left). † |
| ⊢ ¬ 𝜑 ⇒ ⊢ ((𝜑 ∨ 𝜓) ↔ 𝜓) | ||
| Theorem | idornthmr-P4.24b 449 | '∨' Identity is Any Refuted Statement (right). † |
| ⊢ ¬ 𝜑 ⇒ ⊢ ((𝜓 ∨ 𝜑) ↔ 𝜓) | ||
| Theorem | idempotand-P4.25a 450 | Idempotency Law for '∧'. † |
| ⊢ ((𝜑 ∧ 𝜑) ↔ 𝜑) | ||
| Theorem | idempotor-P4.25b 451 | Idempotency Law for '∨'. † |
| ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) | ||
| Theorem | dmorgafwd-L4.1 452 | De Morgan's Law A: Forward Implication Lemma. † |
| ⊢ (¬ (𝜑 ∨ 𝜓) → (¬ 𝜑 ∧ ¬ 𝜓)) | ||
| Theorem | dmorgarev-L4.2 453 | De Morgan's Law A: Reverse Implication Lemma. † |
| ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑 ∨ 𝜓)) | ||
| Theorem | dmorgbfwd-L4.3 454 | De Morgan's Law B: Forward Implication Lemma. |
| ⊢ (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)) | ||
| Theorem | dmorgbrev-L4.4 455 | De Morgan's Law B: Reverse Implication Lemma. † |
| ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) | ||
| Theorem | dmorga-P4.26a 456 | De Morgan's Law A. † |
| ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | ||
| Theorem | dmorgb-P4.26b 457 | De Morgan's Law B. |
| ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | ||
| Theorem | dmorgbint-P4.26c 458 |
De Morgan's Law B ( Intuitionist Version ). †
The reverse of this implication cannot be deduced in an intuitionist framework. However, it can be added as an axiom to create an intermediate strength logic. |
| ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) | ||
| Theorem | andoveror-P4.27-L1 459 | Lemma for andoveror-P4.27a 461. † [Auxiliary lemma - not displayed.] |
| Theorem | andoveror-P4.27-L2 460 | Lemma for andoveror-P4.27a 461. † [Auxiliary lemma - not displayed.] |
| Theorem | andoveror-P4.27a 461 | '∧' Distributes Over '∨' . † |
| ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒))) | ||
| Theorem | oroverand-P4.27-L3 462 | Lemma for oroverand-P4.27b 464. † [Auxiliary lemma - not displayed.] |
| Theorem | oroverand-P4.27-L4 463 | Lemma for oroverand-P4.27b 464. † [Auxiliary lemma - not displayed.] |
| Theorem | oroverand-P4.27b 464 | '∨' Distributes Over '∧'. † |
| ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) | ||
| Theorem | oroverim-P4.28-L1 465 | Lemma for oroverim-P4.28a 467 and oroverimint-P4.28c 470. † [Auxiliary lemma - not displayed.] |
| Theorem | oroverim-P4.28-L2 466 | Lemma for oroverim-P4.28a 467. [Auxiliary lemma - not displayed.] |
| Theorem | oroverim-P4.28a 467 | '∨' Distributes Over '→'. |
| ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) | ||
| Theorem | oroverbi-P4.28-L3 468 | Lemma for oroverbi-P4.28b 469 and oroverbiint-P4.28d 471. † [Auxiliary lemma - not displayed.] |
| Theorem | oroverbi-P4.28b 469 | '∨' Distributes Over '↔'. |
| ⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ 𝜒))) | ||
| Theorem | oroverimint-P4.28c 470 |
One Direction of '∨' Distributes Over '→'. †
Only this version is derivalbe with intuitionist logic. |
| ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) | ||
| Theorem | oroverbiint-P4.28d 471 |
One Direction of '∨' Distributes Over '↔'. †
Only this version is deducible with intuitionist logic. |
| ⊢ ((𝜑 ∨ (𝜓 ↔ 𝜒)) → ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ 𝜒))) | ||
| Theorem | imoverand-P4.29a 472 | '→' Left Distributes Over '∧'. † |
| ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) | ||
| Theorem | imoveror-P4.29-L1 473 | Lemma for imoveror-P4.29b 474 and imoverorint-P4.29c 475. † [Auxiliary lemma - not displayed.] |
| Theorem | imoveror-P4.29b 474 | '→' Left Distributes Over '∨' . |
| ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ ((𝜑 → 𝜓) ∨ (𝜑 → 𝜒))) | ||
| Theorem | imoverorint-P4.29c 475 |
One Direction of '→' Left Distributes Over '∨' . †
Only this direction is deducible with intuitionist logic. |
| ⊢ (((𝜑 → 𝜓) ∨ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ∨ 𝜒))) | ||
| Theorem | imoverim-P4.30-L1 476 | Lemma for imoverim-P4.30a . † [Auxiliary lemma - not displayed.] |
| Theorem | imoverim-P4.30a 477 | '→' Distributes Over Itself . † |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
| Theorem | imoverbi-P4.30-L2 478 | Lemma for imoverbi-P4.30b 479. † [Auxiliary lemma - not displayed.] |
| Theorem | imoverbi-P4.30b 479 | '→' Left Distributes Over '↔'. † |
| ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | ||
| Theorem | rimoverand-P4.31-L1 480 | Lemma for rimoverand-P4.31a 481 and rimoverandint-P4.31c 483. † [Auxiliary lemma - not displayed.] |
| Theorem | rimoverand-P4.31a 481 | '→' is Antidistributive on the Right Over '∧'. |
| ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜒) ∨ (𝜓 → 𝜒))) | ||
| Theorem | rimoveror-P4.31b 482 | '→' is Antidistributive on the Right Over '∨' . † |
| ⊢ (((𝜑 ∨ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜒) ∧ (𝜓 → 𝜒))) | ||
| Theorem | rimoverandint-P4.31c 483 |
One Direction of '→' is Antidistributive on the
Right Over '∧' .
†
Only this direction is deducible with intuitionist logic. |
| ⊢ (((𝜑 → 𝜒) ∨ (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | ||
| Theorem | lemma-L4.5 484 | Lemma 4.5. |
| ⊢ (¬ (𝜑 ∧ ¬ 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | ||
| Theorem | imasor-P4.32-L1 485 | Lemma for imasor-P4.32a 487. [Auxiliary lemma - not displayed.] |
| Theorem | imasor-P4.32-L2 486 | Lemma for imasor-P4.32a 487 and imasorint-P4.32b 488. † [Auxiliary lemma - not displayed.] |
| Theorem | imasor-P4.32a 487 | '→' in Terms of '∨'. |
| ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | ||
| Theorem | imasorint-P4.32b 488 |
One Direction of '→' in Terms of '∨'. †
Only this direction is deducible with intuitionist logic. |
| ⊢ ((¬ 𝜑 ∨ 𝜓) → (𝜑 → 𝜓)) | ||
| Theorem | imasand-P4.33a 489 | '→' in Terms of '∧'. |
| ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | ||
| Theorem | imasandint-P4.33b 490 |
One Direction of '→' in Terms of '∧'. †
Only this direction is deducible with intuitionist logic. |
| ⊢ ((𝜑 → 𝜓) → ¬ (𝜑 ∧ ¬ 𝜓)) | ||
| Theorem | biasandor-P4.34a 491 | '↔' in Terms of '∧' and '∨'. |
| ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓))) | ||
| Theorem | biasandorint-P4.34b 492 |
One direction of '↔' in Terms of '∧' and '∨'. †
Only this direction is deducible with intuitionist logic. |
| ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) → (𝜑 ↔ 𝜓)) | ||
| Theorem | truthtblnegt-P4.35a 493 | ¬ T ⇔ F. † |
| ⊢ (¬ ⊤ ↔ ⊥) | ||
| Theorem | truthtblnegf-P4.35b 494 | ¬ F ⇔ T. † |
| ⊢ (¬ ⊥ ↔ ⊤) | ||
| Theorem | truthtbltimt-P4.36a 495 | ( T → T ) ⇔ T. † |
| ⊢ ((⊤ → ⊤) ↔ ⊤) | ||
| Theorem | truthtbltimf-P4.36b 496 | ( T → F ) ⇔ F. † |
| ⊢ ((⊤ → ⊥) ↔ ⊥) | ||
| Theorem | truthtblfimt-P4.36c 497 | ( F → T ) ⇔ T. † |
| ⊢ ((⊥ → ⊤) ↔ ⊤) | ||
| Theorem | truthtblfimf-P4.36d 498 | ( F → F ) ⇔ T. † |
| ⊢ ((⊥ → ⊥) ↔ ⊤) | ||
| Theorem | truthtbltandt-P4.37a 499 | ( T ∧ T ) ⇔ T. † |
| ⊢ ((⊤ ∧ ⊤) ↔ ⊤) | ||
| Theorem | truthtbltandf-P4.37b 500 | ( T ∧ F ) ⇔ F. † |
| ⊢ ((⊤ ∧ ⊥) ↔ ⊥) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |