HomeHome bfol.mm Proof Explorer
Theorem List (p. 5 of 12)
< Previous  Next >

Mirrors  >  Metamath Home Page  >  PE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for bfol.mm Proof Explorer - 401-500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremjoinimandres-P4.8b.RC 401 Inference Form of joinimandres-P4.8b 400.
((𝜑𝜓) ∧ (𝜒𝜗))       ((𝜑𝜒) → (𝜓𝜗))
 
Theoremjoinimandres-P4.8b.CL 402 Closed Form of joinimandres-P4.8b 400.
(((𝜑𝜓) ∧ (𝜒𝜗)) → ((𝜑𝜒) → (𝜓𝜗)))
 
Theoremjoinimor-P4.8c 403 Join Two Implications Through Disjunction.
(𝛾 → ((𝜑𝜓) ∨ (𝜒𝜗)))       (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))
 
Theoremjoinimor-P4.8c.RC 404 Inference Form of joinimor-P4.8c 403.
((𝜑𝜓) ∨ (𝜒𝜗))       ((𝜑𝜒) → (𝜓𝜗))
 
Theoremjoinimor-P4.8c.CL 405 Closed Form of joinimor-P4.8c 403.
(((𝜑𝜓) ∨ (𝜒𝜗)) → ((𝜑𝜒) → (𝜓𝜗)))
 
5.1.6  Separating Implications.
 
Theoremsepimandr-P4.9a 406 Separate Right Conjunction from Implication.
(𝛾 → (𝜑 → (𝜓𝜒)))       (𝛾 → ((𝜑𝜓) ∧ (𝜑𝜒)))
 
Theoremsepimandr-P4.9a.RC 407 Inference Form of sepimandr-P4.9a 406.
(𝜑 → (𝜓𝜒))       ((𝜑𝜓) ∧ (𝜑𝜒))
 
Theoremsepimandr-P4.9a.CL 408 Closed Form of sepimandr-P4.9a 406.
((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) ∧ (𝜑𝜒)))
 
Theoremsepimorl-P4.9b 409 Separate Left Disjunction from Implication.
(𝛾 → ((𝜑𝜓) → 𝜒))       (𝛾 → ((𝜑𝜒) ∧ (𝜓𝜒)))
 
Theoremsepimorl-P4.9b.RC 410 Inference Form of sepimorl-P4.9b 409.
((𝜑𝜓) → 𝜒)       ((𝜑𝜒) ∧ (𝜓𝜒))
 
Theoremsepimorl-P4.9b.CL 411 Closed Form of sepimorl-P4.9b 409.
(((𝜑𝜓) → 𝜒) → ((𝜑𝜒) ∧ (𝜓𝜒)))
 
Theoremsepimorr-P4.9c 412 Separate Right Disjunction from Implication.
(𝛾 → (𝜑 → (𝜓𝜒)))       (𝛾 → ((𝜑𝜓) ∨ (𝜑𝜒)))
 
Theoremsepimorr-P4.9c.RC 413 Inference Form of sepimorr-P4.9c 412.
(𝜑 → (𝜓𝜒))       ((𝜑𝜓) ∨ (𝜑𝜒))
 
Theoremsepimorr-P4.9c.CL 414 Closed Form of sepimorr-P4.9c 412.
((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) ∨ (𝜑𝜒)))
 
Theoremsepimandl-P4.9d 415 Separate Left Conjunction from Implication.
(𝛾 → ((𝜑𝜓) → 𝜒))       (𝛾 → ((𝜑𝜒) ∨ (𝜓𝜒)))
 
Theoremsepimandl-P4.9d.RC 416 Inference Form of sepimandl-P4.9d 415.
((𝜑𝜓) → 𝜒)       ((𝜑𝜒) ∨ (𝜓𝜒))
 
Theoremsepimandl-P4.9d.CL 417 Closed Form of sepimandl-P4.9d 415.
(((𝜑𝜓) → 𝜒) → ((𝜑𝜒) ∨ (𝜓𝜒)))
 
5.1.7  Some Double Negation Laws.
 
Theoremdnegeq-P4.10 418 Double Negation Equivalence Property.
(¬ ¬ 𝜑𝜑)
 
Theoremnegbicancel-P4.11 419 Negation Cancellation Rule.
(𝛾 → (¬ 𝜑 ↔ ¬ 𝜓))       (𝛾 → (𝜑𝜓))
 
Theoremnegbicancel-P4.11.RC 420 Inference Form of negbicancel-P4.11 419.
𝜑 ↔ ¬ 𝜓)       (𝜑𝜓)
 
Theoremdnegeint-P4.12 421 Version of Double Negative Elimination deducible with intuitionist logic.
(𝛾 → ¬ ¬ ¬ 𝜑)       (𝛾 → ¬ 𝜑)
 
Theoremdnegeint-P4.12.RC 422 Inference Form of dnegeint-P4.12 421.
¬ ¬ ¬ 𝜑        ¬ 𝜑
 
Theoremdnegeqint-P4.13 423 Double Negative Equivalence Property deducible with intuitionist logic.
(¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑)
 
Theoremnegbicancelint-P4.14 424 Negation Cancellation Rule derivalbe with intuitionist logic.
(𝛾 → (¬ ¬ 𝜑 ↔ ¬ ¬ 𝜓))       (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓))
 
Theoremnegbicancelint-P4.14.RC 425 Inference Form of negbicancelint-P4.14 424.
(¬ ¬ 𝜑 ↔ ¬ ¬ 𝜓)       𝜑 ↔ ¬ 𝜓)
 
5.1.8  Extended Syllogism and Transitivity Laws.
 
Theoremtsyl-P4.15 426 Triple Syllogism.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜓𝜒))    &   (𝛾 → (𝜒𝜗))    &   (𝛾 → (𝜗𝜏))       (𝛾 → (𝜑𝜏))
 
Theoremtsyl-P4.15.RC 427 Inference form of tsyl-P4.15 426.
(𝜑𝜓)    &   (𝜓𝜒)    &   (𝜒𝜗)    &   (𝜗𝜏)       (𝜑𝜏)
 
Theoremdbitrns-P4.16 428 Doubled Transitive Rule for Biconditional.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜓𝜒))    &   (𝛾 → (𝜒𝜗))       (𝛾 → (𝜑𝜗))
 
Theoremdbitrns-P4.16.RC 429 Inference Form of dbitrns-P4.16 428.
(𝜑𝜓)    &   (𝜓𝜒)    &   (𝜒𝜗)       (𝜑𝜗)
 
Theoremtbitrns-P4.17 430 Triple Transitive Rule for Biconditional.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜓𝜒))    &   (𝛾 → (𝜒𝜗))    &   (𝛾 → (𝜗𝜏))       (𝛾 → (𝜑𝜏))
 
Theoremtbitrns-P4.17.RC 431 Inference Form of tbitrns-P4.17 430.
(𝜑𝜓)    &   (𝜓𝜒)    &   (𝜒𝜗)    &   (𝜗𝜏)       (𝜑𝜏)
 
5.1.9  Negation Introduction Using "False" Constant.

The following scheme is useful for shortening proofs where one must derive an absurdity from each statement within a disjunction in order to show that the entire disjunction is absurd.

 
5.1.9.1  Rule.
 
Theoremfalsenegi-P4.18 432 Derived Natural Deduction Rule Using ''.
((𝛾𝜑) → ⊥)       (𝛾 → ¬ 𝜑)
 
5.1.9.2  Scheme.

These derived rules may be used in place of falsenegi-P4.18 432.

 
Theoremrcp-FALSENEGI1 433 '¬' Introduction with ''.
(𝛾₁ → ⊥)        ¬ 𝛾₁
 
Theoremrcp-FALSENEGI2 434 '¬' Introduction with ''.
((𝛾₁𝛾₂) → ⊥)       (𝛾₁ → ¬ 𝛾₂)
 
Theoremrcp-FALSENEGI3 435 '¬' Introduction with ''.
((𝛾₁𝛾₂𝛾₃) → ⊥)       ((𝛾₁𝛾₂) → ¬ 𝛾₃)
 
Theoremrcp-FALSENEGI4 436 '¬' Introduction with ''.
((𝛾₁𝛾₂𝛾₃𝛾₄) → ⊥)       ((𝛾₁𝛾₂𝛾₃) → ¬ 𝛾₄)
 
Theoremrcp-FALSENEGI5 437 '¬' Introduction with ''.
((𝛾₁𝛾₂𝛾₃𝛾₄𝛾₅) → ⊥)       ((𝛾₁𝛾₂𝛾₃𝛾₄) → ¬ 𝛾₅)
 
5.2  Logical Equivalencies.
 
5.2.1  Identity Laws for Conjunction and Disjunction.
 
Theoremidandtruel-P4.19a 438 '' Identity is '' (left).
((⊤ ∧ 𝜑) ↔ 𝜑)
 
Theoremidandtruer-P4.19b 439 '' Identity is '' (right).
((𝜑 ∧ ⊤) ↔ 𝜑)
 
Theoremidorfalsel-P4.20a 440 '' Identity is '' (left).
((⊥ ∨ 𝜑) ↔ 𝜑)
 
Theoremidorfalser-P4.20b 441 '' Identity is '' (right).
((𝜑 ∨ ⊥) ↔ 𝜑)
 
5.2.2  More Equivalence Laws Involving "True" and "False".
 
Theoremthmeqtrue-P4.21a 442 Any Theorem is Logically Equivalent to ''.
𝜑       (𝜑 ↔ ⊤)
 
Theoremnthmeqfalse-P4.21b 443 Any Refuted Statement is Logically Equivalent to ''.
¬ 𝜑       (𝜑 ↔ ⊥)
 
Theoremtrueie-P4.22a 444 '' Introduction and Elimination (closed form).
((⊤ → 𝜑) ↔ 𝜑)
 
Theoremfalseie-P4.22b 445 '' Introduction and Elimination (closed form).
((𝜑 → ⊥) ↔ ¬ 𝜑)
 
5.2.3  Identity Laws Involving Theorems.
 
Theoremidandthml-P4.23a 446 '' Identity is Any Theorem (left).
𝜑       ((𝜑𝜓) ↔ 𝜓)
 
Theoremidandthmr-P4.23b 447 '' Identity is Any Theorem (right).
𝜑       ((𝜓𝜑) ↔ 𝜓)
 
Theoremidornthml-P4.24a 448 '' Identity is Any Refuted Statement (left).
¬ 𝜑       ((𝜑𝜓) ↔ 𝜓)
 
Theoremidornthmr-P4.24b 449 '' Identity is Any Refuted Statement (right).
¬ 𝜑       ((𝜓𝜑) ↔ 𝜓)
 
5.2.4  Idempotency Laws.
 
Theoremidempotand-P4.25a 450 Idempotency Law for ''.
((𝜑𝜑) ↔ 𝜑)
 
Theoremidempotor-P4.25b 451 Idempotency Law for ''.
((𝜑𝜑) ↔ 𝜑)
 
5.2.5  De Morgan's Laws.
 
5.2.5.1  Parts of De Morgan's Laws.
 
Theoremdmorgafwd-L4.1 452 De Morgan's Law A: Forward Implication Lemma.
(¬ (𝜑𝜓) → (¬ 𝜑 ∧ ¬ 𝜓))
 
Theoremdmorgarev-L4.2 453 De Morgan's Law A: Reverse Implication Lemma.
((¬ 𝜑 ∧ ¬ 𝜓) → ¬ (𝜑𝜓))
 
Theoremdmorgbfwd-L4.3 454 De Morgan's Law B: Forward Implication Lemma.
(¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))
 
Theoremdmorgbrev-L4.4 455 De Morgan's Law B: Reverse Implication Lemma.
((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑𝜓))
 
5.2.5.2  De Morgan's Laws.
 
Theoremdmorga-P4.26a 456 De Morgan's Law A.
(¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
 
Theoremdmorgb-P4.26b 457 De Morgan's Law B.
(¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
 
Theoremdmorgbint-P4.26c 458 De Morgan's Law B ( Intuitionist Version ).

The reverse of this implication cannot be deduced in an intuitionist framework. However, it can be added as an axiom to create an intermediate strength logic.

((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑𝜓))
 
5.2.6  Distributive Laws.
 
5.2.6.1  Conjunction and Disjunction.
 
Theoremandoveror-P4.27-L1 459 Lemma for andoveror-P4.27a 461. [Auxiliary lemma - not displayed.]
 
Theoremandoveror-P4.27-L2 460 Lemma for andoveror-P4.27a 461. [Auxiliary lemma - not displayed.]
 
Theoremandoveror-P4.27a 461 '' Distributes Over '' .
((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))
 
Theoremoroverand-P4.27-L3 462 Lemma for oroverand-P4.27b 464. [Auxiliary lemma - not displayed.]
 
Theoremoroverand-P4.27-L4 463 Lemma for oroverand-P4.27b 464. [Auxiliary lemma - not displayed.]
 
Theoremoroverand-P4.27b 464 '' Distributes Over ''.
((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
 
Theoremoroverim-P4.28-L1 465 Lemma for oroverim-P4.28a 467 and oroverimint-P4.28c 470. [Auxiliary lemma - not displayed.]
 
Theoremoroverim-P4.28-L2 466 Lemma for oroverim-P4.28a 467. [Auxiliary lemma - not displayed.]
 
Theoremoroverim-P4.28a 467 '' Distributes Over ''.
((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))
 
Theoremoroverbi-P4.28-L3 468 Lemma for oroverbi-P4.28b 469 and oroverbiint-P4.28d 471. [Auxiliary lemma - not displayed.]
 
Theoremoroverbi-P4.28b 469 '' Distributes Over ''.
((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ↔ (𝜑𝜒)))
 
Theoremoroverimint-P4.28c 470 One Direction of '' Distributes Over ''.

Only this version is derivalbe with intuitionist logic.

((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
 
Theoremoroverbiint-P4.28d 471 One Direction of '' Distributes Over ''.

Only this version is deducible with intuitionist logic.

((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) ↔ (𝜑𝜒)))
 
5.2.6.2  Left Implication.
 
Theoremimoverand-P4.29a 472 '' Left Distributes Over ''.
((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
 
Theoremimoveror-P4.29-L1 473 Lemma for imoveror-P4.29b 474 and imoverorint-P4.29c 475. [Auxiliary lemma - not displayed.]
 
Theoremimoveror-P4.29b 474 '' Left Distributes Over '' .
((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))
 
Theoremimoverorint-P4.29c 475 One Direction of '' Left Distributes Over '' .

Only this direction is deducible with intuitionist logic.

(((𝜑𝜓) ∨ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
 
Theoremimoverim-P4.30-L1 476 Lemma for imoverim-P4.30a . [Auxiliary lemma - not displayed.]
 
Theoremimoverim-P4.30a 477 '' Distributes Over Itself .
((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))
 
Theoremimoverbi-P4.30-L2 478 Lemma for imoverbi-P4.30b 479. [Auxiliary lemma - not displayed.]
 
Theoremimoverbi-P4.30b 479 '' Left Distributes Over ''.
((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ↔ (𝜑𝜒)))
 
5.2.7  Antidistributive Laws.
 
Theoremrimoverand-P4.31-L1 480 Lemma for rimoverand-P4.31a 481 and rimoverandint-P4.31c 483. [Auxiliary lemma - not displayed.]
 
Theoremrimoverand-P4.31a 481 '' is Antidistributive on the Right Over ''.
(((𝜑𝜓) → 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))
 
Theoremrimoveror-P4.31b 482 '' is Antidistributive on the Right Over '' .
(((𝜑𝜓) → 𝜒) ↔ ((𝜑𝜒) ∧ (𝜓𝜒)))
 
Theoremrimoverandint-P4.31c 483 One Direction of '' is Antidistributive on the Right Over '' .

Only this direction is deducible with intuitionist logic.

(((𝜑𝜒) ∨ (𝜓𝜒)) → ((𝜑𝜓) → 𝜒))
 
5.2.8  More Useful Logical Equivalencies.
 
Theoremlemma-L4.5 484 Lemma 4.5.
(¬ (𝜑 ∧ ¬ 𝜓) ↔ (¬ 𝜑𝜓))
 
Theoremimasor-P4.32-L1 485 Lemma for imasor-P4.32a 487. [Auxiliary lemma - not displayed.]
 
Theoremimasor-P4.32-L2 486 Lemma for imasor-P4.32a 487 and imasorint-P4.32b 488. [Auxiliary lemma - not displayed.]
 
Theoremimasor-P4.32a 487 '' in Terms of ''.
((𝜑𝜓) ↔ (¬ 𝜑𝜓))
 
Theoremimasorint-P4.32b 488 One Direction of '' in Terms of ''.

Only this direction is deducible with intuitionist logic.

((¬ 𝜑𝜓) → (𝜑𝜓))
 
Theoremimasand-P4.33a 489 '' in Terms of ''.
((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
 
Theoremimasandint-P4.33b 490 One Direction of '' in Terms of ''.

Only this direction is deducible with intuitionist logic.

((𝜑𝜓) → ¬ (𝜑 ∧ ¬ 𝜓))
 
Theorembiasandor-P4.34a 491 '' in Terms of '' and ''.
((𝜑𝜓) ↔ ((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)))
 
Theorembiasandorint-P4.34b 492 One direction of '' in Terms of '' and ''.

Only this direction is deducible with intuitionist logic.

(((𝜑𝜓) ∨ (¬ 𝜑 ∧ ¬ 𝜓)) → (𝜑𝜓))
 
5.2.9  Truth Tables.
 
5.2.9.1  Negation.
 
Theoremtruthtblnegt-P4.35a 493 ¬ T F.
(¬ ⊤ ↔ ⊥)
 
Theoremtruthtblnegf-P4.35b 494 ¬ F T.
(¬ ⊥ ↔ ⊤)
 
5.2.9.2  Implication.
 
Theoremtruthtbltimt-P4.36a 495 ( T T ) T.
((⊤ → ⊤) ↔ ⊤)
 
Theoremtruthtbltimf-P4.36b 496 ( T F ) F.
((⊤ → ⊥) ↔ ⊥)
 
Theoremtruthtblfimt-P4.36c 497 ( F T ) T.
((⊥ → ⊤) ↔ ⊤)
 
Theoremtruthtblfimf-P4.36d 498 ( F F ) T.
((⊥ → ⊥) ↔ ⊤)
 
5.2.9.3  Conjunction.
 
Theoremtruthtbltandt-P4.37a 499 ( T T ) T.
((⊤ ∧ ⊤) ↔ ⊤)
 
Theoremtruthtbltandf-P4.37b 500 ( T F ) F.
((⊤ ∧ ⊥) ↔ ⊥)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1125
  Copyright terms: Public domain < Previous  Next >