PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dnegeq-P4.10

Theorem dnegeq-P4.10 418
Description: Double Negation Equivalence Property.
Assertion
Ref Expression
dnegeq-P4.10 (¬ ¬ 𝜑𝜑)

Proof of Theorem dnegeq-P4.10
StepHypRef Expression
1 dnege-P3.30.CL 278 . 2 (¬ ¬ 𝜑𝜑)
2 dnegi-P3.29.CL 275 . 2 (𝜑 → ¬ ¬ 𝜑)
31, 2rcp-NDBII0 239 1 (¬ ¬ 𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  negbicancel-P4.11  419  lemma-L4.5  484  allnegex-P5  597  exnegall-P5  598  allasex-P5  599  nfrneg-P6  688  dfexists-P7  959  exnegall-P7  1046  allasex-P7  1048
  Copyright terms: Public domain W3C validator