| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrneg-P6 | |||
| Description: ENF Over Negation. |
| Ref | Expression |
|---|---|
| nfrneg-P6 | ⊢ (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfree-D6.1 682 | . 2 ⊢ (Ⅎ𝑥 ¬ 𝜑 ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑)) | |
| 2 | dnegeq-P4.10 418 | . . . 4 ⊢ (¬ ¬ 𝜑 ↔ 𝜑) | |
| 3 | 2 | suballinf-P5 594 | . . 3 ⊢ (∀𝑥 ¬ ¬ 𝜑 ↔ ∀𝑥𝜑) |
| 4 | 3 | suborr-P3.43b.RC 349 | . 2 ⊢ ((∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑)) |
| 5 | orcomm-P3.37 319 | . 2 ⊢ ((∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
| 6 | df-nfree-D6.1 682 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
| 7 | 6 | bisym-P3.33b.RC 299 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ Ⅎ𝑥𝜑) |
| 8 | 1, 4, 5, 7 | tbitrns-P4.17.RC 431 | 1 ⊢ (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 ↔ wff-bi 104 ∨ wff-or 144 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-nfree-D6.1 682 |
| This theorem is referenced by: nfrand-P6 690 nfrex2w-P6 695 nfrexgenw-P6 696 exgennfrw-P6 697 nfrexgen-P6 735 exgennfr-P6 736 genall-P6 737 cbvex-P6 752 qcexandl-P6 762 nfrexgencl-L6 813 exgennfrcl-L6 814 nfrandd-P6 816 nfrord-P6 817 ndnfrneg-P7.2 827 |
| Copyright terms: Public domain | W3C validator |