PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrneg-P6

Theorem nfrneg-P6 688
Description: ENF Over Negation.
Assertion
Ref Expression
nfrneg-P6 (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑)

Proof of Theorem nfrneg-P6
StepHypRef Expression
1 df-nfree-D6.1 682 . 2 (Ⅎ𝑥 ¬ 𝜑 ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑))
2 dnegeq-P4.10 418 . . . 4 (¬ ¬ 𝜑𝜑)
32suballinf-P5 594 . . 3 (∀𝑥 ¬ ¬ 𝜑 ↔ ∀𝑥𝜑)
43suborr-P3.43b.RC 349 . 2 ((∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑))
5 orcomm-P3.37 319 . 2 ((∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
6 df-nfree-D6.1 682 . . 3 (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
76bisym-P3.33b.RC 299 . 2 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ Ⅎ𝑥𝜑)
81, 4, 5, 7tbitrns-P4.17.RC 431 1 (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-bi 104  wff-or 144  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-nfree-D6.1 682
This theorem is referenced by:  nfrand-P6  690  nfrex2w-P6  695  nfrexgenw-P6  696  exgennfrw-P6  697  nfrexgen-P6  735  exgennfr-P6  736  genall-P6  737  cbvex-P6  752  qcexandl-P6  762  nfrexgencl-L6  813  exgennfrcl-L6  814  nfrandd-P6  816  nfrord-P6  817  ndnfrneg-P7.2  827
  Copyright terms: Public domain W3C validator