| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrleq-P6 | |||
| Description: Effective Non-Freeness is Bound to Logical Equivalence . |
| Ref | Expression |
|---|---|
| nfrleq-P6.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| nfrleq-P6 | ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfree-D6.1 682 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
| 2 | nfrleq-P6.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | suballinf-P5 594 | . . 3 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| 4 | 2 | subneg-P3.39.RC 324 | . . . 4 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| 5 | 4 | suballinf-P5 594 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ 𝜓) |
| 6 | 3, 5 | subord-P3.43c.RC 351 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥𝜓 ∨ ∀𝑥 ¬ 𝜓)) |
| 7 | df-nfree-D6.1 682 | . . 3 ⊢ (Ⅎ𝑥𝜓 ↔ (∀𝑥𝜓 ∨ ∀𝑥 ¬ 𝜓)) | |
| 8 | 7 | bisym-P3.33b.RC 299 | . 2 ⊢ ((∀𝑥𝜓 ∨ ∀𝑥 ¬ 𝜓) ↔ Ⅎ𝑥𝜓) |
| 9 | 1, 6, 8 | dbitrns-P4.16.RC 429 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 ↔ wff-bi 104 ∨ wff-or 144 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-nfree-D6.1 682 |
| This theorem is referenced by: nfrand-P6 690 nfrbi-P6 691 example-E6.01a 706 example-E6.02a 712 lemma-L6.06a 766 psubsuccv-P6 806 psubaddv-P6 808 psubmultv-P6 810 nfrandd-P6 816 nfrord-P6 817 nfrbid-P6 818 nfrnfr-P6 821 |
| Copyright terms: Public domain | W3C validator |