PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrleq-P6

Theorem nfrleq-P6 687
Description: Effective Non-Freeness is Bound to Logical Equivalence .
Hypothesis
Ref Expression
nfrleq-P6.1 (𝜑𝜓)
Assertion
Ref Expression
nfrleq-P6 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)

Proof of Theorem nfrleq-P6
StepHypRef Expression
1 df-nfree-D6.1 682 . 2 (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
2 nfrleq-P6.1 . . . 4 (𝜑𝜓)
32suballinf-P5 594 . . 3 (∀𝑥𝜑 ↔ ∀𝑥𝜓)
42subneg-P3.39.RC 324 . . . 4 𝜑 ↔ ¬ 𝜓)
54suballinf-P5 594 . . 3 (∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ 𝜓)
63, 5subord-P3.43c.RC 351 . 2 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥𝜓 ∨ ∀𝑥 ¬ 𝜓))
7 df-nfree-D6.1 682 . . 3 (Ⅎ𝑥𝜓 ↔ (∀𝑥𝜓 ∨ ∀𝑥 ¬ 𝜓))
87bisym-P3.33b.RC 299 . 2 ((∀𝑥𝜓 ∨ ∀𝑥 ¬ 𝜓) ↔ Ⅎ𝑥𝜓)
91, 6, 8dbitrns-P4.16.RC 429 1 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-bi 104  wff-or 144  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-nfree-D6.1 682
This theorem is referenced by:  nfrand-P6  690  nfrbi-P6  691  example-E6.01a  706  example-E6.02a  712  lemma-L6.06a  766  psubsuccv-P6  806  psubaddv-P6  808  psubmultv-P6  810  nfrandd-P6  816  nfrord-P6  817  nfrbid-P6  818  nfrnfr-P6  821
  Copyright terms: Public domain W3C validator