PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubmultv-P6

Theorem psubmultv-P6 810
Description: Proper Substitution Over Multiplication (variable restriction).

'𝑎', '𝑏', and '𝑐' are distinct from all other variables and '𝑥' cannot occur in '𝑤'.

Hypotheses
Ref Expression
psubmultv-P6.1 ([𝑤 / 𝑥] 𝑎 = 𝑡₁𝑎 = 𝑢₁)
psubmultv-P6.2 ([𝑤 / 𝑥] 𝑏 = 𝑡₂𝑏 = 𝑢₂)
Assertion
Ref Expression
psubmultv-P6 ([𝑤 / 𝑥] 𝑐 = (𝑡₁𝑡₂) ↔ 𝑐 = (𝑢₁𝑢₂))
Distinct variable groups:   𝑡₁,𝑎   𝑡₂,𝑎   𝑢₁,𝑎   𝑢₂,𝑎   𝑤,𝑎   𝑡₁,𝑏   𝑡₂,𝑏   𝑢₁,𝑏   𝑢₂,𝑏   𝑤,𝑏   𝑡₁,𝑐   𝑡₂,𝑐   𝑢₁,𝑐   𝑢₂,𝑐   𝑤,𝑐,𝑥   𝑎,𝑏,𝑐,𝑥

Proof of Theorem psubmultv-P6
StepHypRef Expression
1 lemma-L6.06a 766 . . . . 5 𝑥[𝑤 / 𝑥] 𝑎 = 𝑡₁
2 psubmultv-P6.1 . . . . . 6 ([𝑤 / 𝑥] 𝑎 = 𝑡₁𝑎 = 𝑢₁)
32nfrleq-P6 687 . . . . 5 (Ⅎ𝑥[𝑤 / 𝑥] 𝑎 = 𝑡₁ ↔ Ⅎ𝑥 𝑎 = 𝑢₁)
41, 3bimpf-P4.RC 532 . . . 4 𝑥 𝑎 = 𝑢₁
54nfrterm-P6 779 . . 3 𝑥 𝑐 = 𝑢₁
6 lemma-L6.06a 766 . . . . 5 𝑥[𝑤 / 𝑥] 𝑏 = 𝑡₂
7 psubmultv-P6.2 . . . . . 6 ([𝑤 / 𝑥] 𝑏 = 𝑡₂𝑏 = 𝑢₂)
87nfrleq-P6 687 . . . . 5 (Ⅎ𝑥[𝑤 / 𝑥] 𝑏 = 𝑡₂ ↔ Ⅎ𝑥 𝑏 = 𝑢₂)
96, 8bimpf-P4.RC 532 . . . 4 𝑥 𝑏 = 𝑢₂
109nfrterm-P6 779 . . 3 𝑥 𝑐 = 𝑢₂
115, 10nfrmult-P6 782 . 2 𝑥 𝑐 = (𝑢₁𝑢₂)
122, 7psubmultv-P6-L1 809 . 2 (𝑥 = 𝑤 → (𝑐 = (𝑡₁𝑡₂) ↔ 𝑐 = (𝑢₁𝑢₂)))
1311, 12isubtopsubv-P6 727 1 ([𝑤 / 𝑥] 𝑐 = (𝑡₁𝑡₂) ↔ 𝑐 = (𝑢₁𝑢₂))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  term-mult 5   = wff-equals 6  wff-bi 104  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-multl 25  ax-L9-multr 26  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator