| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > bimpf-P4.RC | |||
| Description: Inference Form of bimpf-P4 531. † |
| Ref | Expression |
|---|---|
| bimpf-P4.RC.1 | ⊢ 𝜑 |
| bimpf-P4.RC.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bimpf-P4.RC | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bimpf-P4.RC.1 | . . . 4 ⊢ 𝜑 | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → 𝜑) |
| 3 | bimpf-P4.RC.2 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | bimpf-P4 531 | . 2 ⊢ (⊤ → 𝜓) |
| 6 | 5 | ndtruee-P3.18 183 | 1 ⊢ 𝜓 |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-true-D2.4 155 |
| This theorem is referenced by: example-E5.04a 675 nfrgenw-P6 684 nfrim-P6 689 nfrex2w-P6 695 exgennfrw-P6 697 qimeqalla-P6-L1 698 qimeqallb-P6-L1 700 solvesub-P6a 704 example-E6.01a 706 example-E6.02a 712 qremall-P6 722 qremex-P6 723 lemma-L6.02a 726 genex-P6 731 nfrgen-P6 733 exgennfr-P6 736 genall-P6 737 nfrterm-P6 779 psubsuccv-P6 806 psubaddv-P6 808 psubmultv-P6 810 ndexe-P6 825 axL12-P7 982 gennfr-P8 1079 exgennfr-P8 1085 nfrsucc-P8 1119 nfradd-P8 1120 nfrmult-P8 1121 |
| Copyright terms: Public domain | W3C validator |