PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bimpf-P4.RC

Theorem bimpf-P4.RC 532
Description: Inference Form of bimpf-P4 531.
Hypotheses
Ref Expression
bimpf-P4.RC.1 𝜑
bimpf-P4.RC.2 (𝜑𝜓)
Assertion
Ref Expression
bimpf-P4.RC 𝜓

Proof of Theorem bimpf-P4.RC
StepHypRef Expression
1 bimpf-P4.RC.1 . . . 4 𝜑
21ndtruei-P3.17 182 . . 3 (⊤ → 𝜑)
3 bimpf-P4.RC.2 . . . 4 (𝜑𝜓)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
52, 4bimpf-P4 531 . 2 (⊤ → 𝜓)
65ndtruee-P3.18 183 1 𝜓
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-true-D2.4 155
This theorem is referenced by:  example-E5.04a  675  nfrgenw-P6  684  nfrim-P6  689  nfrex2w-P6  695  exgennfrw-P6  697  qimeqalla-P6-L1  698  qimeqallb-P6-L1  700  solvesub-P6a  704  example-E6.01a  706  example-E6.02a  712  qremall-P6  722  qremex-P6  723  lemma-L6.02a  726  genex-P6  731  nfrgen-P6  733  exgennfr-P6  736  genall-P6  737  nfrterm-P6  779  psubsuccv-P6  806  psubaddv-P6  808  psubmultv-P6  810  ndexe-P6  825  axL12-P7  982  gennfr-P8  1079  exgennfr-P8  1085  nfrsucc-P8  1119  nfradd-P8  1120  nfrmult-P8  1121
  Copyright terms: Public domain W3C validator