PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrim-P6

Theorem nfrim-P6 689
Description: ENF Over Implication.
Hypotheses
Ref Expression
nfrim-P6.1 𝑥𝜑
nfrim-P6.2 𝑥𝜓
Assertion
Ref Expression
nfrim-P6 𝑥(𝜑𝜓)

Proof of Theorem nfrim-P6
StepHypRef Expression
1 qimeqex-P5-L2 611 . . 3 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
2 nfrim-P6.1 . . . . 5 𝑥𝜑
3 dfnfreealt-P6 683 . . . . 5 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
42, 3bimpf-P4.RC 532 . . . 4 (∃𝑥𝜑 → ∀𝑥𝜑)
5 nfrim-P6.2 . . . . 5 𝑥𝜓
6 dfnfreealt-P6 683 . . . . 5 (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓))
75, 6bimpf-P4.RC 532 . . . 4 (∃𝑥𝜓 → ∀𝑥𝜓)
84, 7imsubd-P3.28c.RC 272 . . 3 ((∀𝑥𝜑 → ∃𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))
9 qimeqallhalf-P5 609 . . 3 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
101, 8, 9dsyl-P3.25.RC 262 . 2 (∃𝑥(𝜑𝜓) → ∀𝑥(𝜑𝜓))
11 dfnfreealt-P6 683 . 2 (Ⅎ𝑥(𝜑𝜓) ↔ (∃𝑥(𝜑𝜓) → ∀𝑥(𝜑𝜓)))
1210, 11bimpr-P4.RC 534 1 𝑥(𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrand-P6  690  nfrbi-P6  691  splitelof-P6  778  nfrnfr-P6  821
  Copyright terms: Public domain W3C validator