| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrim-P6 | |||
| Description: ENF Over Implication. |
| Ref | Expression |
|---|---|
| nfrim-P6.1 | ⊢ Ⅎ𝑥𝜑 |
| nfrim-P6.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfrim-P6 | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qimeqex-P5-L2 611 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | nfrim-P6.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 3 | dfnfreealt-P6 683 | . . . . 5 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 4 | 2, 3 | bimpf-P4.RC 532 | . . . 4 ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) |
| 5 | nfrim-P6.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 6 | dfnfreealt-P6 683 | . . . . 5 ⊢ (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓)) | |
| 7 | 5, 6 | bimpf-P4.RC 532 | . . . 4 ⊢ (∃𝑥𝜓 → ∀𝑥𝜓) |
| 8 | 4, 7 | imsubd-P3.28c.RC 272 | . . 3 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 9 | qimeqallhalf-P5 609 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 10 | 1, 8, 9 | dsyl-P3.25.RC 262 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 11 | dfnfreealt-P6 683 | . 2 ⊢ (Ⅎ𝑥(𝜑 → 𝜓) ↔ (∃𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) | |
| 12 | 10, 11 | bimpr-P4.RC 534 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: nfrand-P6 690 nfrbi-P6 691 splitelof-P6 778 nfrnfr-P6 821 |
| Copyright terms: Public domain | W3C validator |