| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > dsyl-P3.25.RC | |||
| Description: Inference Form of dsyl-P3.25 261. † |
| Ref | Expression |
|---|---|
| dsyl-P3.25.RC.1 | ⊢ (𝜑 → 𝜓) |
| dsyl-P3.25.RC.2 | ⊢ (𝜓 → 𝜒) |
| dsyl-P3.25.RC.3 | ⊢ (𝜒 → 𝜗) |
| Ref | Expression |
|---|---|
| dsyl-P3.25.RC | ⊢ (𝜑 → 𝜗) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsyl-P3.25.RC.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 → 𝜓)) |
| 3 | dsyl-P3.25.RC.2 | . . . 4 ⊢ (𝜓 → 𝜒) | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜓 → 𝜒)) |
| 5 | dsyl-P3.25.RC.3 | . . . 4 ⊢ (𝜒 → 𝜗) | |
| 6 | 5 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜒 → 𝜗)) |
| 7 | 2, 4, 6 | dsyl-P3.25 261 | . 2 ⊢ (⊤ → (𝜑 → 𝜗)) |
| 8 | 7 | ndtruee-P3.18 183 | 1 ⊢ (𝜑 → 𝜗) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: lemma-L5.04a 667 nfrim-P6 689 trnsvsubw-P6 710 exipsub-P6 720 trnsvsub-P6 763 splitelof-P6-L1 777 dfnfreeint-P7 969 dfpsubv-P7 977 nfrexall-P8 1086 nfrnegconv-P8 1110 |
| Copyright terms: Public domain | W3C validator |