PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dsyl-P3.25.RC

Theorem dsyl-P3.25.RC 262
Description: Inference Form of dsyl-P3.25 261.
Hypotheses
Ref Expression
dsyl-P3.25.RC.1 (𝜑𝜓)
dsyl-P3.25.RC.2 (𝜓𝜒)
dsyl-P3.25.RC.3 (𝜒𝜗)
Assertion
Ref Expression
dsyl-P3.25.RC (𝜑𝜗)

Proof of Theorem dsyl-P3.25.RC
StepHypRef Expression
1 dsyl-P3.25.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
3 dsyl-P3.25.RC.2 . . . 4 (𝜓𝜒)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜓𝜒))
5 dsyl-P3.25.RC.3 . . . 4 (𝜒𝜗)
65ndtruei-P3.17 182 . . 3 (⊤ → (𝜒𝜗))
72, 4, 6dsyl-P3.25 261 . 2 (⊤ → (𝜑𝜗))
87ndtruee-P3.18 183 1 (𝜑𝜗)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  lemma-L5.04a  667  nfrim-P6  689  trnsvsubw-P6  710  exipsub-P6  720  trnsvsub-P6  763  splitelof-P6-L1  777  dfnfreeint-P7  969  dfpsubv-P7  977  nfrexall-P8  1086  nfrnegconv-P8  1110
  Copyright terms: Public domain W3C validator